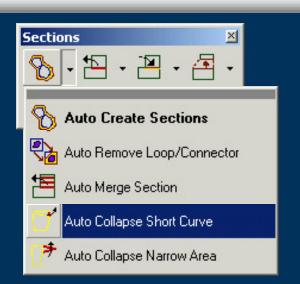
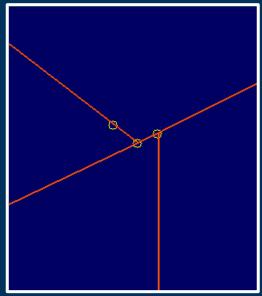


VI-DEAS 11 NX CAE New Features

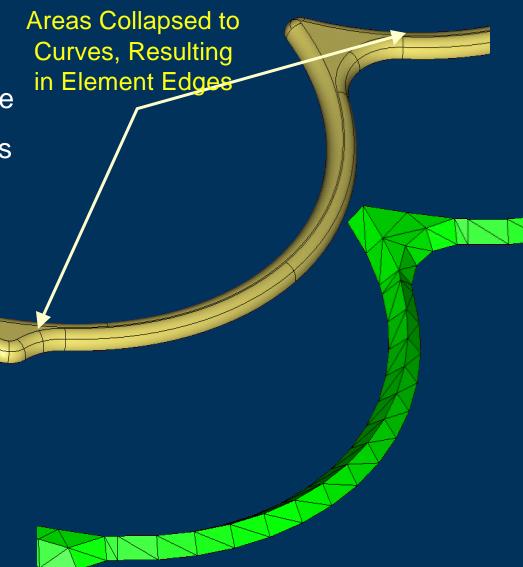
© UGS PLM Solutions Inc. 2003. All right reserved.


CAE Pre-Processing Enhancements



- Section Mesh—Sections Creating
 - Auto Collapse Short Curve
 - Auto Collapse Narrow Area
 - Auto Merge Section Improvements
- Meshing
 - Tetrahedron Meshing Assistant
- FEM Connectors
 - Line Connectors for Lap Joint
 - Line Connectors for T and L Joint
- Laminates
 - New Create and Modify User Interface Forms

Sections – Auto Collapse Short Curves

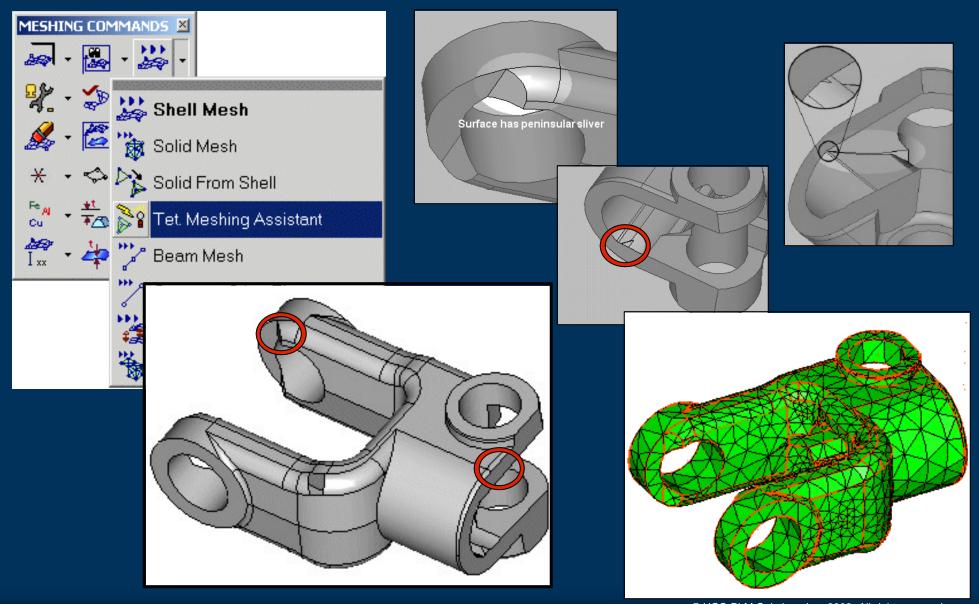

- Identifies Short Curves based on User Defined Threshold
- Reduces Short Curve to a Point using Remove Connector or Replace Connector Functions
 - Does Not Operate on 3 Sided Sections
- More Robust than I-deas 10 hidden Command
 - Now uses Remove Connector when Acceptable
 - Corrects Back-to-Back Short Curves

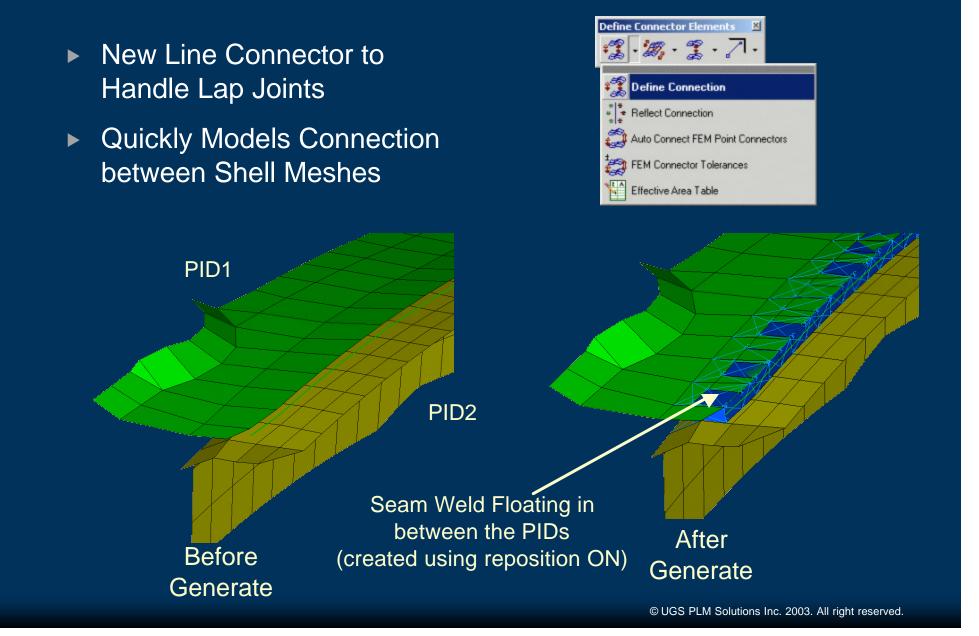
- Auto Collapse Narrow Area Reduces a Thin Region to a Line
- Handles the Following Situations
 - Sliver Surfaces
 - ► Isthmus
- Reduces Element Count in the Mesh and Produces a Better Quality Mesh

- Enhances Auto Merge Section Command to Merge Thin 2-Loop Sections
 - Thin Slice of Cylinders or Thin Concentric Circles
- Reduces Element Count in the Mesh and Produces a Better Quality Mesh

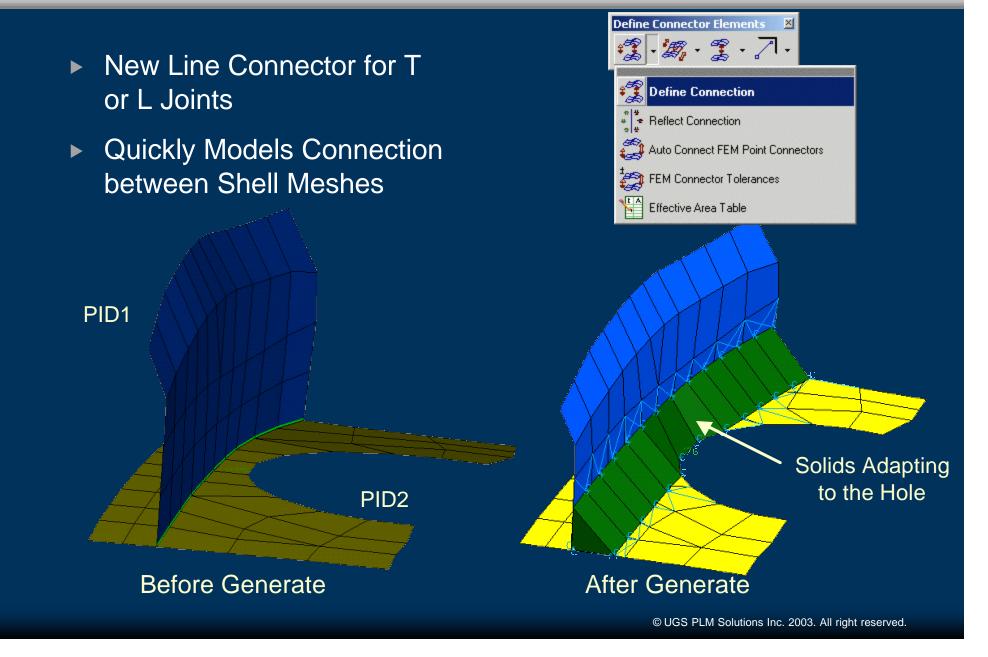
Initial Section Creation does Not Eliminate Narrow Areas

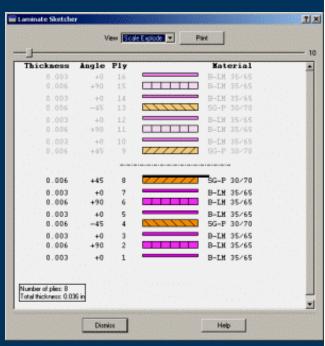
New Assistant to Produce a Tet Mesh

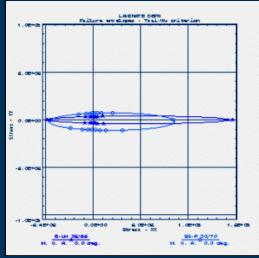

- New Icon in Meshing Task
- One Button Mesh when Possible
- Pauses for User Repair
- Geometry Characteristics and Approach
 - Operates on Nearly Watertight Parts
 - Uses Section Abstraction and Meshing Automation
- Results in Mesh Size and Quality Suitable for Linear Static Solve with Model Solution
 - Smart about Handling Topology and Working Around Problem Areas

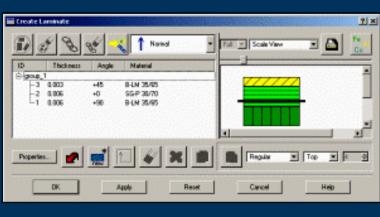

APIC

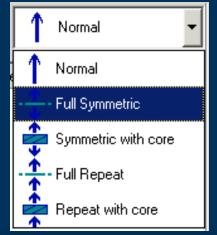
Meshes this Housing in 24 Minutes. Without using the new Tet Assistant it is difficult and time consuming to get a decent mesh with Surface-based Approach


Tetrahedron Meshing Assistant—Example

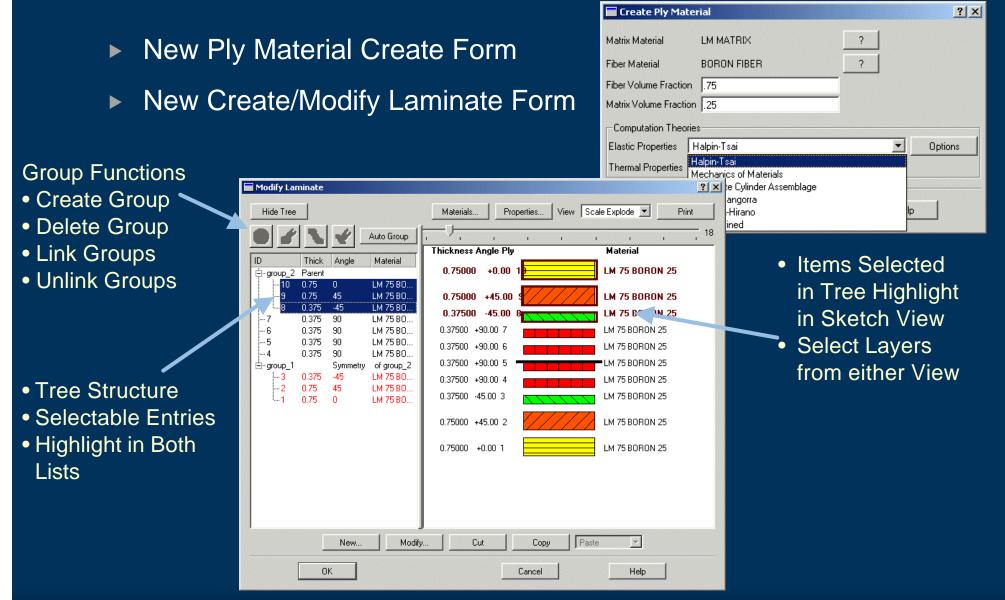


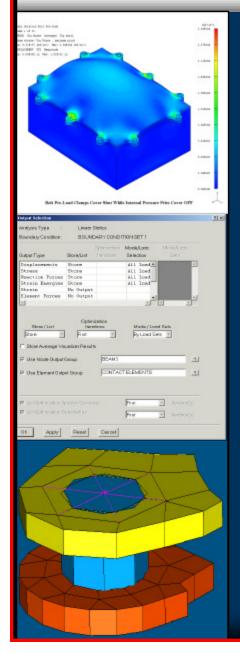

FEM Line Connectors—Example APIC Cross Member and Top Rear Rails Line Weld Closed Loop Line Weld ine Weld Define Two Lap Joint Line Welds Between These Components © UGS PLM Solutions Inc. 2003. All right reserved.

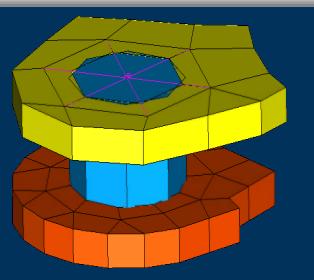

Laminates User Interface Updates

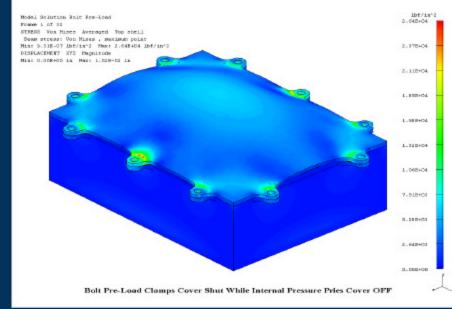


	reate Ply Ma	terial		? ×
Ma	terials			
Mat	rix: LOW	/ MODULUS		Fe
	Volur	me Fraction 0.65		Cu
Fibe	er: BOF	ION		Fe
	Volur	ne Fraction 0.35		Cu
Cor	mputation Theo	xies		
Elast	tic Properties	Halpin-Tsai	•	Options
The	mal Properties	Levin	•	
[OK	Cancel	н	elp






CAE Model Solution Enhancements



- Pre-Loaded Bolt Analysis
- Multiple Solution Set Solves
- Output Request by Groups
- Modal Solves
 - Recover Modes based on Effective Mass Thresholds
 - Output Effective Mass for Rotational Degree of Freedom
- Support for Hardware with Multiple Processors
 - Assembly Solution

- Define Bolt Shank as a Single Beam
- Define Bolt Tension Load on Beam Element
 - ► Meshing, Element, Beam Geometric Data
 - Turn On Bolt Pre-load Toggle in Solution Set
- Resulting Solve is Actually 2 Solves in 1

Example with Results

Pre-Loaded Bolt Analysis—Example APIC 1 Contact Pressure, Shell Bottom 1bf/1n^2 1.48E+03 1.30E+03 1.11E+03 9.26E+02 7.41E+02 Element Node. Axial Force 5.56E+02 3.71E+02 1107 2005 5.106E+01 Create bolt here Ø 1.85E+02 2006 1107 5.106E+01 2001 1109 5.151E+01 0.00E+00 Stress Stiffening 1109 2002 5.151E+01 lbf/in^2 SHELF LOAD Von Mises Stress Shell Top 1110 2004 5.141E+01 6.88E+04 1110 2002 1410.01 Bolt Preload Analysis 6.02E+04 SRSS Shear Force Element Node 111 BOLT PRELOAD TRAINING Bolt Preload BC ? 5.16E+04 2005 1107 1.476E-02 4.30E+04 1107 2006 1.476E-02 3.44E+04 2001 3.597E-03 1109 1109 2002 3.597E-03 2.58E+04 1110 2004 6.150E-03 1.72E+04 1110 2003 6.150E-03 2009 2008 1.558E-02 8.60E+03 2009 2007 1.558E-02

3.91E-12

- I-deas Model Solution Solver Form Now Supports Multiple Solution Sets
 - Available for Iterative or Batch Solve
 - Recommend using Autosave in Interactive Solve in order to Save Model between Solution Sets
- All Solutions Sets Use Same Input Parameters
 - Hypermatrix and Log Filenames
 - Singularity Removal, Shell Auto Restraint, and All Other Options
- Reduced User Interaction to Perform a Complete Set of Desired Solution Set Solves

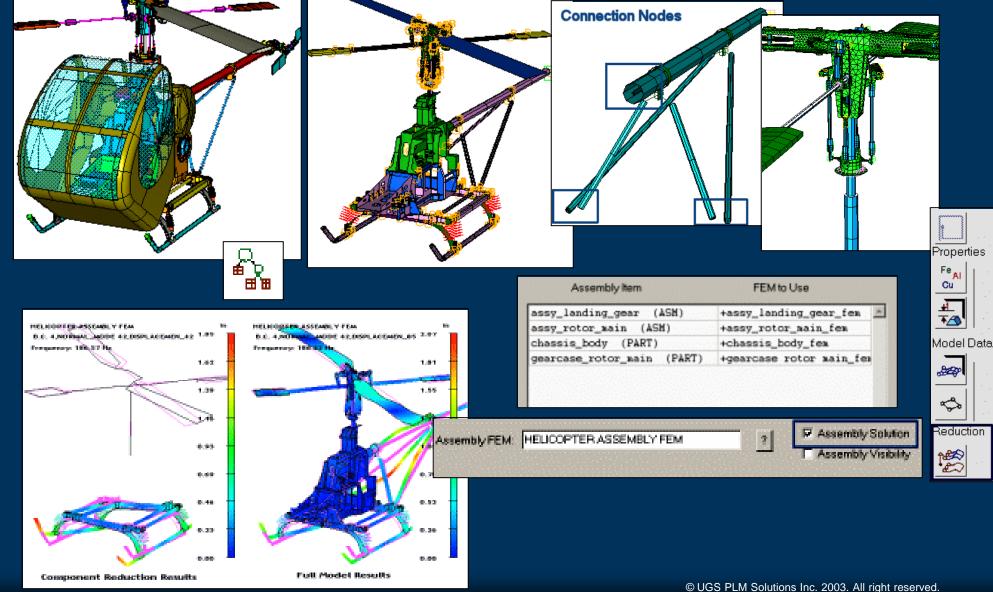
- Allows Users to Select Existing I-deas Groups to Control Output
- Nonlinear Solve Supports Selection of Different Groups for Different Time Steps

Output Selection					?×					
Analysis Type :	Linear S	Statics								
Boundary Condition :	BOUNE	ARY CONDI	TION SET 1							
		Optimization	Mode/Loac	Sets						
Output Type	Store/List	Iterations	Selection	Sets						
Displacements	Store		All Load 🔺	<u> </u>						
Stress	Store		All Load							
Reaction Forces	Store		All Load							
Strain Energies	Store		All Load							
Strain	No Output									
Element Forces	No Output		-	_						
<										
Store / List Store Store Store Average Vis Use Node Output (First ualizer Result	tions	Mode / Loa By Load Se	ets 🔽	Sets					
☑ Use Element Outp	·		TELEMENTS							
 List Optimization Ita List Optimization State 		ary	First First	-	2					
OK Apply	Reset	Cancel								

- Effective Mass Reported for Rotational as well as Translational Directions
- Solution Control Form Optionally Extends the Eigenvalue Search Range to achieve a Minimum Total Effective Mass in One or More Directions

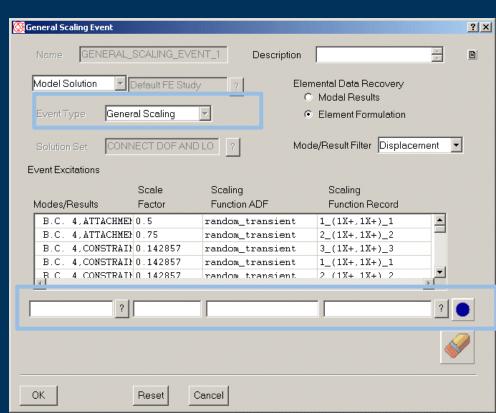
MODE	NORMALIZE ×	ED EFFECTIVE Y	E MASSES Z	R×	RY	RZ	
1 2 3 4 5 6 7 8 9 10	0.407543 0.566945 0.000000 0.000255 0.000005 0.000000 0.002422 0.017890 0.000000	0.566973 0.407528 0.000000 0.000229 0.000044 0.000027 0.000000 0.017710 0.002620 0.000000	0.000000 0.983652 0.000000 0.000000 0.000000 0.000003 0.000002 0.000002 0.000001	$\begin{array}{c} 0.014041\\ 0.010113\\ 0.000001\\ 0.006492\\ 0.001253\\ 0.000836\\ 0.000000\\ 0.539650\\ 0.081935\\ 0.000001\\ \end{array}$	0.010104 0.014062 0.000000 0.001112 0.007318 0.000141 0.000001 0.071359 0.549425 0.000000	0.000004 0.000000 0.000000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	00 Solution Control 20 modes above 0
11 12 13 14 15 16 17 18 19 20	0.000000 0.000001 0.000000 0.000000 0.000000 0.000020 0.000020 0.000009 0.000000 0.000001 0.000000	0.000000 0.000001 0.000001 0.000001 0.000001 0.000014 0.000001 0.000001 0.000001 0.000001	0.000006 I 0.000000 0.000000 0.000000 0.000000 0.000003 0.000003 0.000003 0.000000 0.000000 0.000000 0.000000 0.000000	0.000001 0.000031 0.000081 0.000000 0.000032 0.000684 0.000002 0.000049 0.000029 0.000029 0.001556	0.000000 0.000090 0.000022 0.000000 0.000001 0.000360 0.000017 0.000018 0.000018 0.000063 0.000011	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	10 modes below 1 Hz 10 modes about 1 Hz All modes between 0 Hz and 1 Hz
TOTAL	0.995172	0.995238	0.993145	0.656786	0.654104	0.2613	X 0.95 Y 0.9 Z 0.8 Maximum number of additional iterations 3
							OK Apply Reset Cancel

- I-deas Model Solution Batch Solve Support for Multiple Processors
 - Available on Sun in I-deas 10 M1
 - Available on SGI and HP in I-deas 10 M2
 - Requires an Environmental Variable to be Set
- I-deas Model Solution Batch and Interactive Solve Support for Multiple Processors
 - Available on Windows Platforms since I-deas 9
 - Available on Windows 2000 and Windows XP for I-deas 11

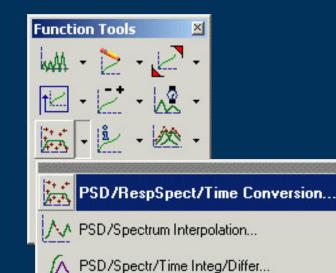


Component Reduction Using Assembly Solution

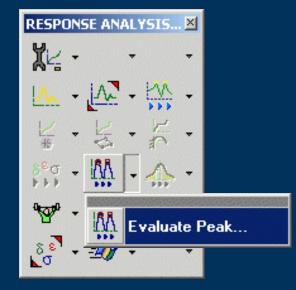
- Assembly FEM creation
- Connection of components in an assembly FEM
- Generation of reduced component representations
- Definition of reduced components in the assembly FEM
- Solution of an assembly FEM containing reduced components
- Post-processing of an assembly FEM containing reduced components


Response Analysis & Durability Enhancements

- User Defined Participation Factors/Functions
- Support Response Spectrum Function Conversions
- Support Peak Evaluations for any Variable for Static, Transient, Frequency, or General Scaling Events
- Perform Calculations in either Element or Material Coordinate Systems

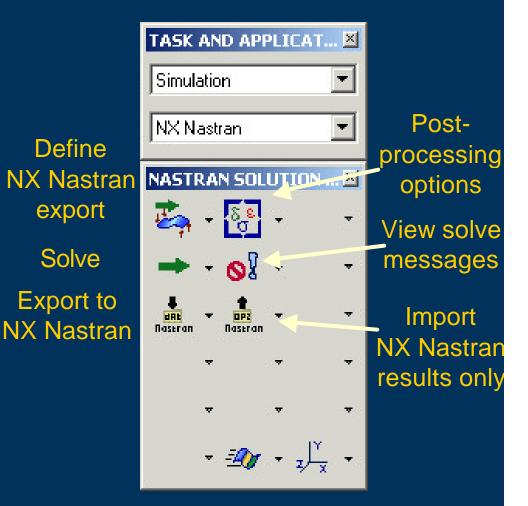

User Defined Participation Factors/Functions

- General Scaling Event lets User Define Participation Factors and Functions for Modal Data
 - User Selects Applicable Participation Function for Desired Results
 - Once Provided, Data Recovery is Possible
- Excitation Implicitly Contained in Scaling of Modal Data
 - Therefore the User does not need to Define Excitation
- Supported Modal Results Data
 - Displacement, Stress, Strain, Element Force, Reaction Force



- ► Shock Response Spectrum (SRS) Function ↔ Transient Function
- ► SRS Function ↔ PSD Function
- Three Methods of Conversion from SRS to Time Available
 - First Method is to Convert to a PSD, then use PSD to Time Conversion
 - Second Method goes Directly from SRS to Time using a Damped Sinusoid Approach
 - Third Method goes Directly from SRS to Time using a Wavelets Approach

- Now Supports Static, Transient, Frequency, and General Scaling Events
 - Previously Supported only Response Spectrum Events
- Peak Evaluation Form Remains the Same



- NX Nastran Now Integrated as an I-DEAS Task
- NX Nastran Task Improves Pre- and Post-Processing Integration of I-DEAS with NX NASTRAN Solver
- Now Prepare, Solve, and Load Results from MSC NASTRAN Directly within I-DEAS
- Interoperability between Response Analysis and MSC NASTRAN

NX Nastran Solves

- Specify Current Analysis or Select pre-defined Input Deck
- Interactive or Batch
- Executable Location Options for either Enterprise or Desktop
- Feels like an Interactive Model Solution Solve
- Options for Both Interactive and Batch NX Nastran Solvers
- Retrieve NX Nastran Results

Post-processing tools and create coordinate system

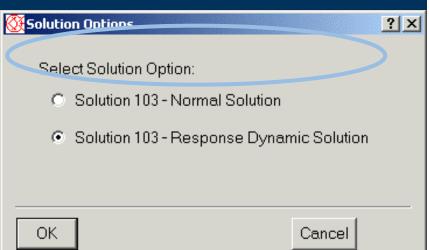
- Read/Write of User
 Preferences
- Relocate Round-trip Icon to Main Export Form
- Compute Shell Linear and Parabolic Orientations using Nastran-consistent Functions
- Stop Icon Supports Export
- Improve Export Accuracy by Handling All I-deas Double Precision Data

🕂 Nastran	File Exporter		<u>?</u> ×
NAS	TRAN Vendor		
NAS	TRAN File To Export	laminate.dat	2
V	File Management		
	Executive Control		
▼	Case Control		
V	Bulk Data Control		-
	Round Tripping		
V	Params		
	Write diagnostics file		-
	Include in NASTRAN	\ file	
User Prefs	User Prefs		
Write	Apply Reset	Cancel	

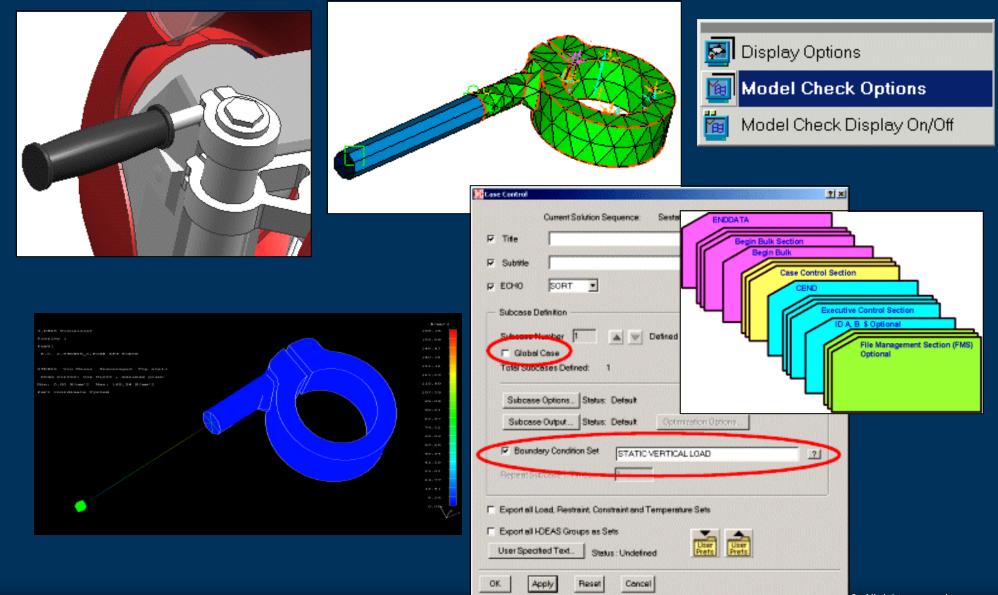
- Design Optimization (SOL 200)
- Permanent SPC on GRID
 - Defined with Restraint Sets
- Beam (TEMPRB) and shell (TEMPP1) element temperature
- New default bulk data format: max precision, Nastran exponential format
- Do not write out materials associated with rigid elements

Executive Control	<u> </u>
Interactive Contro	I
Approach	None
NASTRAN Sol	ution Sequence Sestatic 101
Design Optimiza	
Max Time (CP	Bulk Data Control 2 ×
🗖 DIAG argumer	I-DEAL Part
	Subset Exp nt
User Specified T	Available: Selected:
	SOLIDS SHELLS PERMANENT SPC
Prefs Prefs	Select ALL Select ALL
ок	Axisymmetric Analysis
OK	Highest harmonic for axisymmetric analysis 8
	Fluid Grids Superelements Design Variables
	Permanent Single Point Constraints
	Bulk Data Options Status: Default
	Element Mappings Status: Default
	Bulk Data Formatter
	User Specified Text Status : Undefined
	User Prefs
	OK Apply Reset Cancel

- Improve Performance of Selective Import of OP2
- Support PATRAN and FEMAP Physical and Material Property Comment Cards
 - Obtain property names from comment cards
- Import Beam Cross Section Names from Comment Cards
- Smart Processing of include Files Contained in Input Deck
- Support Read/Write of User Preferences
- NX Nastran and MSC NASTRAN Results Viewer Mode Toggle Selection in INI


Œ

- Element Quality Checks use NASTRAN Algorithms
- Green Elements Pass Check
- Yellow Elements Violate Default GEOMCHECK Settings
 - Solve Proceeds with Warning
- Red Elements Fatal to NASTRAN Solve


1odel Checking Display Op	otions	<u>1</u>		
NX Nastran Element Quality	- Set E	Element Colors		
NX Nastran Physical Property T	able Crea	ate Results		
C Element Thickness	nn			
C Boundary Condition				
C Section		Quality Checks Display	r Options	<u>?</u> ×
	Number of Colors:	3 💌		
Set Criteria				
	Shells	Warning Limit	Solids	Warning Limit
OK Apply	🔽 Aspect Ratio	> 100	🔽 Aspect Ratio	> 100
	🔽 Mid Node	< 0.5, 0.865	🔽 Mid Node	< 0.5, 0.865
	🔽 Skew	< 10, 30	🔽 Jacobian	<= 0
	🔽 Warp	> 0.1	🔽 Face Planarity	> 0.707
	🔽 Taper	> 0.5		
	Included Angle	↔ 30, 160		
		All On/Off		
	ОК		Cancel	

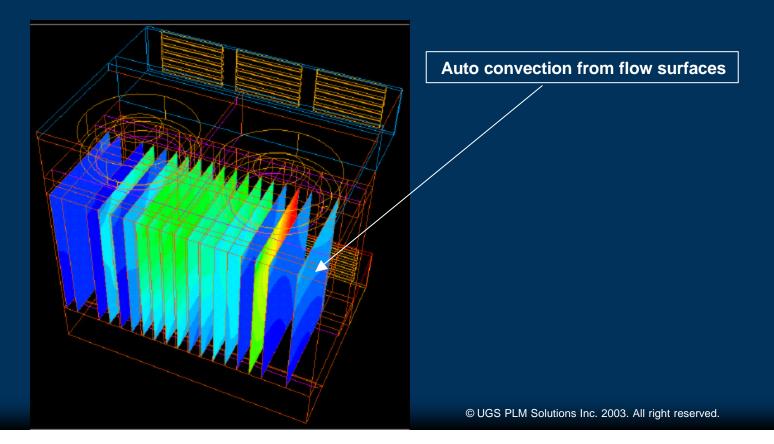
Response Analysis and NX Nastran Interoperability

- Improves Integration between NX Nastran and Response Analysis
 - Export Normal Modes 103 Solve
 - Ability to Recover Constraint Modes (for enforced motion) and Attachment Modes (for force excitations)
 - Include file ra.dmap
- Data loader recovers
 - Constraint modes
 - Attachment modes
 - Equivalent attachment modes
 - Effective mass modes
- Response Analysis behaves in same manner as if extra modes were generated by Model Solution

ESC/TMG Enhancements

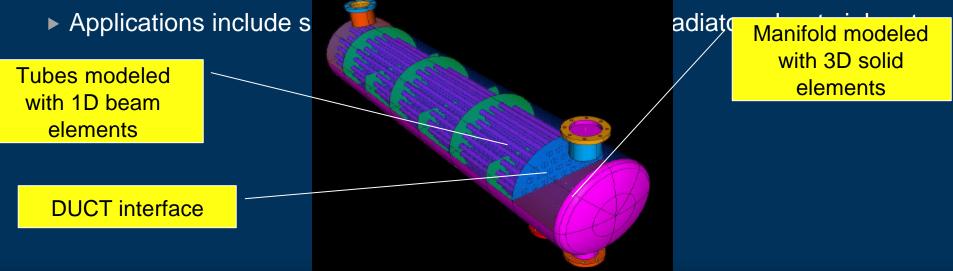
Auto Convection Flow Surfaces

- Automatic Free Face Entity
- Duct Flow with CFD
- New ESC Boundary Conditions
- Misaligned Curved Flow Surfaces
- Result Reporter


23824

132

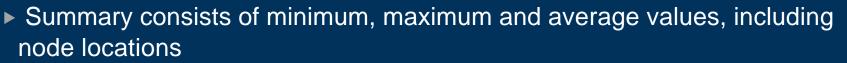
- All surfaces meshed with non-fluid shell elements will automatically have convection to fluid
- Volumes with non-fluid solid elements will also convect automatically to surrounding fluid



- Fluid Flow entities can be directly defined on surfaces
 - ► Fans
 - Screens
 - Vents
- No need to create shell meshes to define flow boundary conditions
- Thermal boundary conditions can also be defined directly on surfaces, including
 - Thermal Couplings
 - Thermal Boundary conditions

Duct Flow networks can be integrated with 3D Flow models

- Incorporate simplified flow network with complex flow domains in same model
- Activated by using generic entity using key word DUCT_INTERFACE
- Iterative solution between 1D network and 3D flow domain
- Thermal and Flow boundary conditions transferred between two flow domains

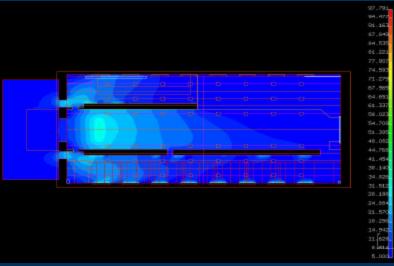


Track results summary during solv

Results summary can be reported every 5

iterations for:

- Velocity
- Pressure
- Fluid Temperature
- ► K Turbulent Kinetic Energy
- ▶ e Dissipation of K
- Specific humidity and scalar

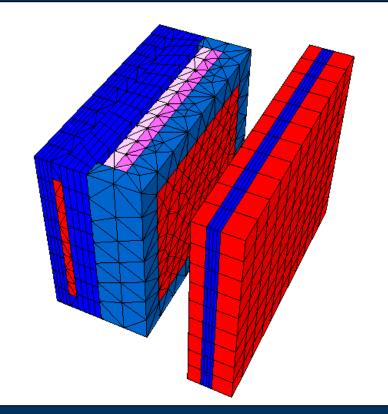

- ► All results are printed to the Solver monitor as well as the escmsg.dat file
- Results Recovery entity to extract results on selected elements, useful for large transient solutions

-		Sele	cted Results – Creat	e	
Name	Selecte	d Results 1			
🗆 Add ta	o dataset	elements with	results in the top and bottom	300	
Data Opt	tions	All On/Off			
🖬 Vėlo	city		🖬 Temperature		
🔲 Velo	city Adjus	sted	🗖 Heat Flux		
M Pres	isure		🗖 Heat Transfer Coefficien	nt	
🗆 К-В	Turbulen	ce	📕 Joule Data		
🔲 Auid	Density		🗆 Humidity / Scalars		
🔲 She	ar Stress		PPD (Predicted Percent	Dissatisfied)	
🗆 Reu	ghness		PMY (Predicted Mean W	ote)	
🗆 V+			🗆 Track result summary d	luring solve	
🗆 Tota	d Forces				
Mas Mas	s Flux				
🔲 Mac	h Number				

New datasets for HVAC results, including

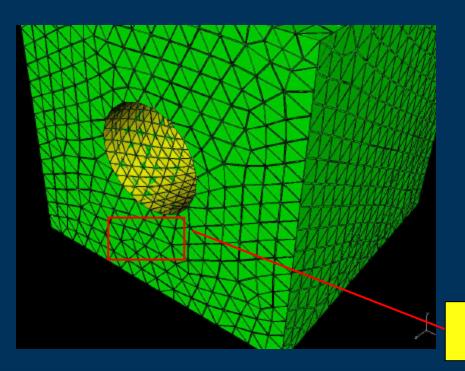
- PMV Predicted Mean Vote
 - Represents Mean Vote on group comfort based on ASHRAE scale of Hot;Warm;Slightly warm, Neutral;Slightly cool;cool;Cold
- PPD Predicted Percent Dissatisfied
 - Percentage of a group reporting thermal discomfort based on calculated PMV
- Results can be used to assess performance of HVAC systems for comfort and efficiency
- Results Visualizer can be directly started from ESC or TMG task

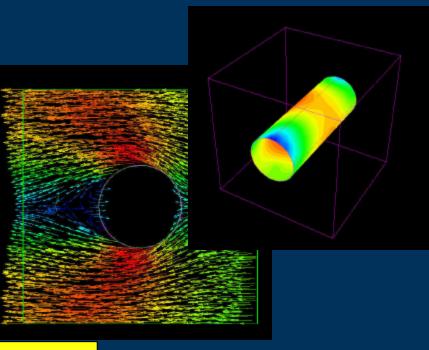
I-DEAS ESC Boundary Conditions


APIC

New Transient Flow Boundary Conditions

- Time varying Fan boundary condition
- Time varying inlet temperature
- Time varying temperature & pressure at Vents
- Time varying ambient pressure

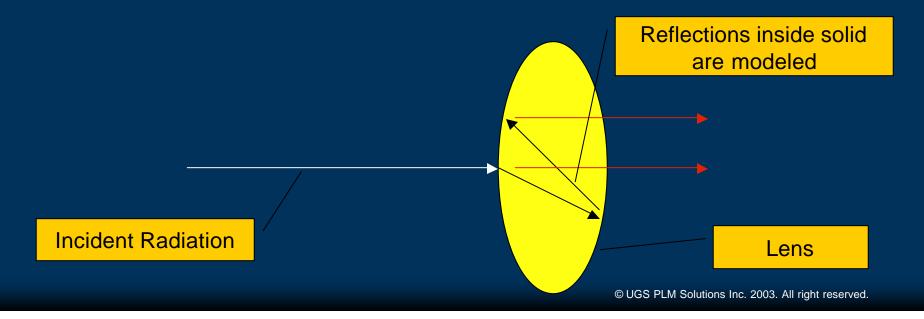

- Improved DxMesh solution for mismatched fluid meshes
 - Faster processing and solve times
 - Less memory requirements
 - Handling of larger models
 - High degree of accuracy



Misaligned Curved Flow Surfaces are now supported

- Nodal coincidence between curved surfaces and adjacent fluid mesh not necessary
- FE Append can be used to add curved surfaces & blockages to fluid meshes

Mismatched interface


Hemicube Method

- Off screen rendering
- No-shadowing radiation request option supported
- Performance enhancements: sorting based on area is performed
- Memory requirements substantially reduced
- Additional messages during solve e.g. inactive reverse sides

Ray tracing in solid elements

- Radiation extinction in solid elements
- Multiple reflections in thick transmissive components, quartz burners, projector lamps
- Collimated radiative sources can be defined
- Maximum and Minimum solar flux position for orbit and attitude modeling

- Completely revised Free Convection boundary condition
 - Characteristic dimension defined by user or picked from geometry
 - Surface orientation defined directly or picked from geometry
 - Additional correlations provided, including
 - Concentric cylinders
 - Convection from Top/Bottom/Both sides
 - Concentric sphere
 - Convection in open channels (chimney)

1	Free Convective Coupling – Create
	Name Free Conv. Coupling 1
	Convecting Elements
	Visible Select Sketch
	M Convect to Ambient
	Field Elements
	Visible E Select Sketch
	Correlation Type Inclined Plate
	Convect From Top =
	Characterictic Length
	Plate Normal D, 0, 0 Pick
	Multiplier)1
	OK Apply Reset Cancel

I-DEAS ESC/TMG Results Reporter

Results reporting for Groups

- Averaged and Calculated results for selected groups
- Group to Group Heat Flows
- ► Heat Maps
- Data can be extracted as an Excel spreadsheet

Lobate

Overs Home Disary 1.

Set1 Data Optio

Red Load

Read Rings

First Maps

5. Set 1

Set 1 to Set 2 Data Option First Roy

> FEMI_4 PEMI_2

FEMI

Transferst Option (* All Transf

Delected Taxaer

Tempentus Difference

- Casete Reporter Buccp

Leiset.

and Output File FrEDCSolvey TheOware ad-

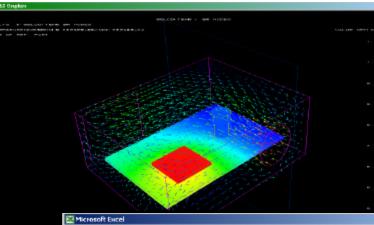
Florid Properties

T Dut Flow Date

Thus Chags Quilty

Cubital J Scence View Parts

T Fire Fictor


Available Corr

a Solution G

-CAP 1

CHIP

-FIMI -FIMI -FIMI -FIMI -FIMI -FCB T -FCB T

		npletedals A B	0	D	E	F	G	H
	$\frac{1}{2}M$	ANA	1	- 4	28	1		
XI	3	Heat Map	5					
Open	4	Time				Te Group		Temp (J)
0965	5	7230.2	*	2		DARK SEDE PAN	E. 💌	1.51E+01
nið tr (Pasonas	6	Group	Тетр ()) [≏]	Conduction (w)	Radiation (w)	Convection (w)	Linear Thermal Coupling (w)	Tobal (++)
deut Date	7	MAIN UNIT	1.13E+01		-9.29E+00			-9.29E+00
stion. To Pluid.	8	PANEL EDGE	9.56E-03	-1.88E+01				-1.88E+01
22	9	ReflectorBath	-1.28E+01		-2.34E-02			-2.34E-02
1	10	Rest	1.70E+01					
	11	Space	-2.69E+02		-2.39E+03	3. A.	194 (S. 1997) 194	-2.39E+03
-	12	SUN SIDE PA	-2.59E+01		-7.43E-02		-1.06E+01	-1.07E+01
÷	13	Heatlanda	0.00E+00					3.09E+03
	14	Heat loads	0.00E+00					3.09E+03
	16	Total	0.00E+00	-1.88E+01	-2.40E+03	0.00E+00	-1.06E+01	6.58E+02
	17	10104	0.000 100	-1.000-001	2.402.103	0.502.100	1.000 101	0.000.002
	18							
	19							
	20							
1 1	21							
	22							
	23							
	24							
	25							

APIC

- O ×

denne Biltin Part Lab

QMIY Charge |

END

