

Optics Software for Layout and Optimization

User Guide

Revised: 2015-07-24

Lambda Research Corporation 25 Porter Road Littleton, MA 01460 USA

> Tel: 978-486-0766 Fax: 978-486-0755

 $\frac{support@lambdares.com}{www.lambdares.com}$

COPYRIGHT

The OSLO software and User Guide are Copyright $\ @$ 2015 by Lambda Research Corporation. All rights reserved.

This software is provided with a single user license or with a multi-user network license. Each license may only be used by one user and on one computer at a time.

The OSLO User Guide contains proprietary information. This information as well as the rest of the User Guide may not be copied in whole or in part, or reproduced by any means, or transmitted in any form without the prior written consent of Lambda Research Corporation.

TRADEMARKS

OSLO® is a registered trademark of Lambda Research Corporation.

TracePro® is a registered trademark of Lambda Research Corporation.

Pentium® is a registered trademark of Intel, Inc.

Windows $XP^{\text{®}}$, Windows Vista $^{\text{®}}$, Windows $7^{\text{®}}$, and Microsoft $^{\text{®}}$ are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Table of Contents

Table of Contents		iii
Preface	1	
Chapter 1	- Your first OSLO session	2
Introduction.		2
Symbols us	sed in this chapter	2
	.0	
_	rface	
Spherical mir	ror example	6
Defining th	ne lens system data	6
_	ne lens surface data	
	ne lens in the Autodraw window	
_	e on axis spot diagram	
	lens surface data	
	lens	
	he aperture	
	ne lens in the graphics window, with "zooming".	
	e best focal plane	
	e on axis point spread function (PSF)	
_	the rays in the lens drawing	
	g the off axis optical path difference (OPD)	
-	5 the off axis optical pain difference (O1D)	
	the final design	
_	data	
	program	
	program	
Chapter 2	Configuring OSLO	
CHIADHEL Z = C		77
	Configuring OSLO	22
Introduction.		22
Introduction. Toolbar menu	us	22
Introduction. Toolbar menu Main wind	OW	22 22 22
Introduction. Toolbar ment Main wind Text windo	OW	22 22 22 22
Introduction. Toolbar ment Main wind Text windo Graphics w	ow	22 22 22 23
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba	ow	
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba Preferences	ow	22 22 22 22 23 23 24
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba Preferences Designer n	ow	22 22 22 22 23 23 24 24
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba Preferences Designer n ISO10110	ow	22 22 22 22 23 23 24 24 24
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba Preferences Designer n ISO10110 Graphics (as	22 22 22 22 23 23 24 24 24 24
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a	ow	22 22 22 22 23 23 24 24 24 25 25
Introduction. Toolbar ment Main wind Text windo Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error be	ame (dsgn)	22 22 22 22 23 23 24 24 24 25 25 25
Introduction. Toolbar ment Main wind Text windo Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error bo Tangent chec	ow	22 22 22 23 23 24 24 24 25 25 25 25
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error be Tangent chec	ame (dsgn) drawing settings (adr1, adr2, adr3, edcm) gems, gacl, gfwb, glab, grax, gfbw, drra, pens) lternate mode (gfam) exces (noeb) k (tanc on)	22 22 22 23 23 24 24 24 25 25 25 25
Introduction. Toolbar ment Main wind Text windo Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error be Tangent chec Compile CCI	ame (dsgn) drawing settings (adr1, adr2, adr3, edcm) gems, gacl, gfwb, glab, grax, gfbw, drra, pens) lternate mode (gfam) oxes (noeb) k (tanc on)	22 22 22 23 23 24 24 24 25 25 25 25 26
Introduction. Toolbar ment Main wind Text windo Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error be Tangent chec Compile CCI Chapter 3 - 7 Arithmetic ca	ow	22 22 22 23 23 24 24 24 25 25 25 25 26 27
Introduction. Toolbar ment Main wind Text windo Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error bo Tangent chec Compile CCI Chapter 3 - 7 Arithmetic ca OSLO comm	ow	22 22 22 23 23 24 24 24 25 25 25 25 26 27
Introduction. Toolbar ment Main wind Text windo Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error be Tangent chec Compile CCI Chapter 3 - 7 Arithmetic ca OSLO comm Assigning va	ame (dsgn) drawing settings (adr1, adr2, adr3, edcm) gems, gacl, gfwb, glab, grax, gfbw, drra, pens) lternate mode (gfam) oxes (noeb) k (tanc on) The command line llculations ands lues to predefined variables	22 22 22 23 23 24 24 24 25 25 25 25 26 27 27
Introduction. Toolbar ment Main wind Text windo Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error be Tangent chec Compile CCI Chapter 3 - 7 Arithmetic ca OSLO comm Assigning va Printing	ame (dsgn) drawing settings (adr1, adr2, adr3, edcm) gems, gacl, gfwb, glab, grax, gfbw, drra, pens) lternate mode (gfam) oxes (noeb) k (tanc on) The command line lculations ands lues to predefined variables.	22 22 22 23 23 24 24 24 25 25 25 25 27 27 27 28
Introduction. Toolbar ment Main wind Text winde Graphics w The status ba Preferences Designer n ISO10110 Graphics (g Graphics a No error be Tangent chec Compile CCI Chapter 3 - 7 Arithmetic ca OSLO comm Assigning va Printing The history b	ame (dsgn) drawing settings (adr1, adr2, adr3, edcm) gems, gacl, gfwb, glab, grax, gfbw, drra, pens) lternate mode (gfam) oxes (noeb) k (tanc on) The command line llculations ands lues to predefined variables	22 22 22 23 23 24 24 24 25 25 25 25 27 27 27 28

iv	
The message area	
Executing CCL command sequences	
Alphabetic list of system data variables	32
Chapter 4 - Lens data entry	34
8 x 30 binoculars: Specification	34
Calculations	
Choosing an eyepiece	
Scaling the eyepiece	
Choosing a catalog objective	
Combining the objective and the eyepiece	38
Surface decenters and tilts	
Adding a right angle prism	
Converting the prism to a Porro prism	
Adding a second Porro prism	
Completing the design	
Chapter 5 - Graphical analysis	47
Introduction	
Opening a new graphics window	
Labeling a graphics window	
Generating a plot	
Saving a plot	
Cutting and pasting a plot	
Lens drawing	
Drawing a lens in 2D.	
Drawing a lens in 3D	
Drawing a lens in 3D with sliders	
Ray intercept curves analysis	
Ray analysis (RIC)	
Ray intercept curves for 2D field points	
Ray intercept curves report graphic	
Chapter 6 - Numerical analysis	56
Introduction	
Finding the edge rays	
Graphical estimates	
Numerical calculation.	
From the text window	
From the menu headers	
From the command line (abbreviated)	
By executing in the Edit window	
From the command line (in full)	
The spreadsheet buffer	
Clearing the text window and spreadsheet buffer	
Reading from the spreadsheet buffer	
Writing to the spreadsheet buffer	
Scrolling the spreadsheet buffer	
Chapter 7 - Slider-wheel design	63
1:1 wide angle relay	
Introduction	
Defining the starting point	63

Setting up the starting lens	63
Slider-wheel design with ray intercept curves	65
Plotting the MTF across the field	66
Editing the slider-wheel callback command	66
Listing of the modified slider-wheel callback CCL	68
Slider-wheel design using MTF at one frequency	69
Setting clear apertures	70
Chapter 8 - Programming	71
Introduction	
Defining a new command: sno.	
Structure of a CCL command	
Search CCL library: scancel	
Defining a new command: ctn	
Initial version of command	
Version with formatted output	
Adding the glass name string	
Adding headers and documentation	
The text window toolbar	
Adding the command <u>sno</u> to the toolbar	
Calling sno from the toolbar	
Defining a new command: xmt	
Writing a command <u>xmt</u> to print transmittance values	
Converting <u>xmt</u> printed output to graphics	
Preserving the text window contents	
Scaling and drawing the axes	
Adding standard plot commands to xmt	
Error handling	
Listing of complete command xmt	
The graphics window toolbar	
Creating a new icon for <u>xmt</u>	
Adding the <u>xmt</u> icon to the graphics window toolbar	
Calling <u>xmt</u> from the toolbar icon	
SCP programming: *triplet	
Load command file programming	
Chapter 9 - Optimization	89
Optimizing using Seidel aberrations	
Setting up the starting design	
Defining the error function	
Description of the Aberration Operands error function	
Creating a model glass	
Defining the optimization variables	
Optimization	
Choosing a real glass type	
Final optimization steps	
Autofocus	
Optimization using finite rays	
50 mm f/5.6 objective: specification	
Finding a starting design	
Checking for vignetting in the starting design	
Assessing the starting design	
Defining and validating the error function	
Description of the GENII error function	
Defining the optimization variables	
U 1	

vi	
Optimization	101
Engineering aspects: edge thicknesses	102
Slider-wheels with concurrent optimization on MTF	103
Adjusting lens thicknesses	
Engineering aspects: ambiguity avoidance	
Engineering aspects: testplate fitting	
Rounding air spaces	
Adjusting clear apertures	106
Chapter 10 - Tolerances and drawings	108
50 mm f/5.6 objective: specification	108
Defining the tolerance error function:"opcb_dmtf"	108
Defining the compensator	
Optimizing on the compensator	
Calculating decenter tolerances.	
Checking tolerance entries	111
Symmetrical tolerances surface calculation	111
Updating symmetrical surface tolerances	
Asymmetric tolerances surface calculation	113
Updating asymmetric surface tolerances	
Updating asymmetric component tolerances	
Asymmetric tolerances calculation	
Tolerance data listing	
ISO 10110 component drawing	116
Setting element drawing defaults	
Setting element material properties	
Setting element surface properties	
Element drawing	118
Appendix 1 - Index of lens data commands	119
Appendix 2 - Graphics reference	122
Alphabetical index	
Tabular graphics command reference	
Tabular graphics index	
Graphics reference examples	

Preface

Since its inception at the Institute of Optics at the University of Rochester, the software written by Doug Sinclair has played a key role in the teaching as well as in the performance of optical design. So OSLO, perhaps more than any other optical design software, shows signs of its origins in a teaching establishment. The flexibility of the user interface, the open source nature of much of the code, the CCL programming language which is very similar to C, and real capability of OSLO-EDU, the free version of OSLO, to carry out real design tasks, make it the ideal choice for the teaching environment.

This manual has been written to supplement the current documentation for commercial users of OSLO software. Its second aim is to provide a gentle introduction to the experience of optical design for those who have only just downloaded OSLO-EDU from the internet. The first chapter is written expressly for them. More experienced designers may wish to skip straight to the second chapter.

Chapter 1 - Your first OSLO session

Introduction

This chapter gives a click-by-click description of how OSLO can be used to carry out a very simple task involving synthesis, analysis, and optimization of a spherical concave mirror. It is in general applicable to all editions of OSLO, including OSLO EDU. This means that more advanced facilities, which may only be available in OSLO Standard and Premium editions, are not included.

The exercise will demonstrate the two main modes of calculation:

- the geometrical approximation, in which light is treated as a ray, or the path of a photon
- the physical mode of calculation, in which the light is treated as propagating as a wave front, and the results take account of the effects of diffraction.

Symbols used in this chapter

A left-click on the mouse is indicated by a white arrow, and a right-click by the box with the word "Right". If a drop-down menu is selected by a left-click, then it is represented by a black circle and arrow.

Step by step instructions are marked with bullet points. Instructions about what to do if things go badly wrong are in *italics* and labeled *HELP!*.

Anything typed from the keyboard (whether as a command or as an entry in a dialog box) is shown in **this typeface**.

Labels and headers in spreadsheets and dialog boxes are given in **this typeface**.

Buttons to be clicked are shown in **gray**.

Check-boxes (called "radio buttons" in the documentation) are shown like this:

Messages which appear whenever the cursor hovers above an icon are shown in a shaded box. These are known as tooltips.

Tooltips

Questions and answers, representing a typical dialog between a lens designer and the customer, are given in **bold type.**

ខ្ពុន

Running OSLO

EITHER click on the shortcut icon on the desktop in the Windows desktop,
 OR click on Start ► All Programs ► OSLO►OSLO [EDU etc]
 Edition....

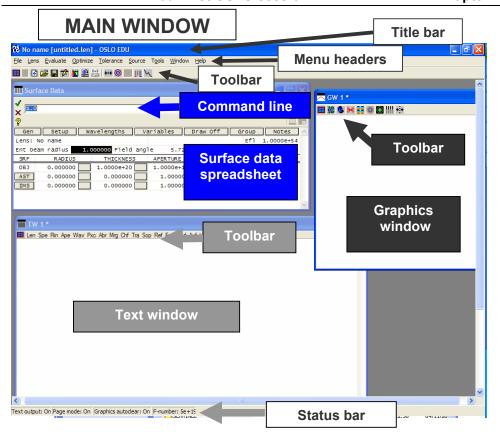
- The program opens with an introductory dialog box.
 Click anywhere in the box to close it.
- If a message about re-building the CCL database appears, click on **OK**
- The "Tip of the Day" is a useful tutorial for new users.
 Click on Close Alternatively it can be suppressed permanently by removing the tick from the box in the bottom left corner.
- The **Get_startup_option** window opens.
- Choose the default option: Start a new lens and click on OK
- The OSLO main window should now appear, similar in appearance to that shown here. We will now discuss the individual components of this window in detail.

The user interface

A number of terms are defined here, and given in **bold** print. At the top of the **main window** in the blue border is the **title bar**, which gives the lens identifier, the file name under which the current lens was lost saved, and the edition of OSI.

which the current lens was last saved, and the edition of OSLO currently running.

Beneath this lies a row of **menu headers**, **File**, **Lens**, **Evaluate**, etc, each of which its own drop-down menu has. Many of the program commands can be accessed through these menus. The last of the menu headers is **Help** which gives access to the on-line documentation. In Windows, this can also be accessed via the F1 key on the keyboard.


Below that is a row of **icons** forming the **main window toolbar**, which give one-click access to the most frequently used control functions. The first of these is the **Setup Window/Toolbar** icon which gives access to a list of further groups of icons which

can be added to the toolbar. Other icons are to Open surface data spreadsheet, Open a new lens, Open an existing lens, Save the current lens, Open the standard text editor, etc. Each icon has a description of its function which pops up as a tooltip when the cursor is placed over the icon.

At the bottom of the main window, there is a **status bar** which can be expanded and customized by the user. This will be described in chapter 2.

The window which opens in the top left hand corner is called the **surface data spreadsheet.** This is the area where all the properties of the lens and its working conditions are defined. Entering data into this spreadsheet is described in chapter 4. Other spreadsheets are available, but only one spreadsheet can be open at a time.

When the surface data spreadsheet does not open, click on the blue lens icon on the left of the toolbar in the main window. Alternatively, select from the Lens menu header the option Surface Data Spreadsheet...

Immediately above the surface data spreadsheet is the command line where OSLO commands are typed. They are executed either by pressing Enter or by clicking on the green tick:

Accept pending entry/Close spreadsheet

Online documentation for any command may be accessed by typing the command in the command line, and then pressing the yellow question mark beside it.

If no command is entered the documentation for any currently open spreadsheet is given.

Below the command line there is a **message area**, and on the right hand end there is the **history button**. The command line is described in detail in chapter 3.

There should also be a **text window** visible. This is where printed output is directed. Along the top of this there lays a **toolbar** consisting of a row of text labels, which are OSLO commands, executed by clicking. Numerical analysis is described in chapter 6.

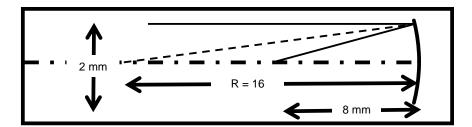
HELP! If the text window toolbar does not look like the one in the diagram, click on the **Setup Window/Toolbar** icon in the top left-hand corner of the text window, and select **Standard Tools** from the menu. Any or all of the toolbar groups may be selected for a text window. Either one or two, but not more, text windows can be shown at a time.

The user may create additional toolbar entries using the CCL programming language. Detailed instructions of how to do this are given in chapter on programming, chapter 8.

Also on the main screen there is at least one **graphics window.** This has a **toolbar** consisting of a row of **icons.** All graphical output is displayed in one of the graphics windows. Graphical analysis is discussed in chapter 5. There is an index of OSLO graphics facilities in Appendix 2 at the end of this book.

HELP! If the graphics window toolbar does not look like the one in the diagram, click on the **Setup Window/Toolbar** icon on the left-hand side of the graphics window toolbar, and select **Standard Tools** from the menu. Only one of the graphics

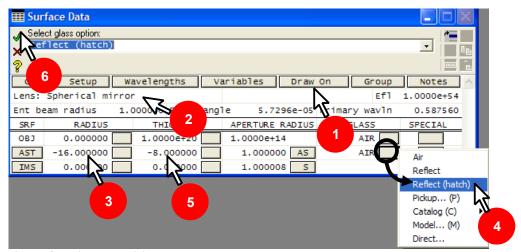
window icon groups may be displayed at a time, but different graphics windows may have different groups. Up to 30 graphics windows may be created and displayed by the user at any one time. Two more may be generated automatically.


The user may generate icons in any of the graphics toolbars. This is described in chapter 8.

HELP! If you have trouble finding the text window or the graphics window, then from the **Window** menu header select **Tile Windows**. Alternatively you can type the command **tile** into the command line and then either click on the green tick \checkmark or press \hookleftarrow (Enter) on the keyboard.

Spherical mirror example

The remainder of this chapter will consist of instructions on how to specify a concave spherical mirror of radius 16 mm, and then to assess its on-axis performance at apertures of f/4 and f/2.3. Finally its performance at 18° off axis will be assessed, and the stop position and image radius of curvature optimized to give the best performance over the field of view.


For clarity, each section will be prefaced by a question from a "customer," given in bold type.

Question: Does a spherical mirror working at f/4 give a "diffraction limited" image at its focus when used with a 2 mm diameter parallel axial beam of green light?

Defining the lens system data

The working conditions of the lens (such as units, paraxial setup data, wavelengths and field points) are defined by entries in the surface data spreadsheet above the double line.

On the surface data spreadsheet:

- 1. Left-click with the mouse on Draw Off to open the **Autodraw** window The label on the button changes to Draw On while the **Autodraw** window is active.
- 2. Add the lens identifier (up to 32 characters): **Lens: Spherical mirror** Click once on the green tick.

HELP! If you were to choose a different name for the lens identifier, and the first word of the name happened to be a valid OSLO command words (such as **Spe**), the name would be

rejected and the relevant command executed instead. To avoid this, the title might be enclosed in quotation marks: e.g. "spe".

The default value of **Ent beam radius** is 1.0 mm, the default primary wavelength is $0.58756~\mu m$ (the green helium d-line), and the default units are mm, so for this exercise these do not need to be changed. Also at this stage it is only necessary to assess the mirror on axis, so the field angle does not need to be changed from the default value of 1 milliradian.

Defining the lens surface data

Turning now to the data below the double line, the first line (labeled **OBJ**) refers to the object space, numbered 0. A parallel beam is the default condition for a new lens. So the **THICKNESS** - that is the object distance - is infinity (in OSLO, that means 10^{20} , written **1.0000e+20** lens units). Nothing has to be changed on this line since in the object space a medium (**GLASS**) of **AIR** is also the default. The object radius (1.0000e+14) is calculated from the field angle by the program, and is not specified by the user.

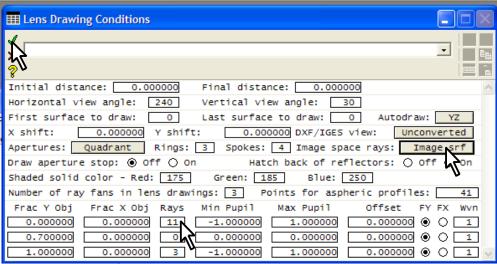
On the second line for surface 1 (**AST**):

- 3. Because the aperture is "f/4" the focal length must be 4 times the beam diameter of 2 mm, and the focal length is half the radius of curvature. Change the **RADIUS** to a value of-16 (mm). Since this is measured from the surface to its center, a negative radius implies a surface concave to the incoming beam.
- **4.** Click on the gray button next to **AIR** under **GLASS** and select Reflect (hatch) (or Reflect the only difference being the appearance of the drawing).
- **5.** Change the **THICKNESS** from 0.000000 to: **-8** (mm). This is the separation from surface 1 to surface 2. It is negative because after reflection the light travels in the opposite direction to the local z-axis.
- **6.** Once again, click on the green tick (\checkmark) to confirm the changes.

Note that for surface 1, the **APERTURE RADIUS** (1.000000) has **AS** in the gray box next to it. **A** means that this surface is the aperture stop. **S** means that the size of the surface is governed by a "paraxial solve," which means that it will be adjusted to accommodate (approximately) both axial and off-axis beams without truncation.

On the third line, which corresponds to the image (**IMS**) a **RADIUS** of 0.0 means that the image is plane. Once again its size is the default - it is adjusted using a "paraxial solve." The box for the next space (**THICKNESS**) will used for a defocus value, but is zero at present. The box showing the medium after the image (**GLASS**) is of course blank.

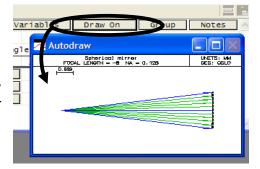
There is no need to close the surface data spreadsheet before starting the next section.


Drawing the lens in the Autodraw window

In the main window:

- Click on the Lens menu header to open the menu list shown.
- Select the last item, Lens Drawing Conditions ...

The **Lens Drawing Conditions** spreadsheet will appear. This is the spreadsheet where the overall appearance of lens system drawings is determined.



In the **Lens Drawing Conditions** spreadsheet:

- After Image space rays: select Draw rays to image surface.
- The table at the bottom determines what rays will be displayed. In the column headed Rays type on the first line 11 for the number of rays to be drawn for the first (on axis) field point for which Frac Y Obj = 0.00000. These rays will be drawn with a green pen.
- Leave everything else unchanged, and close with the green tick \checkmark .

The **Autodraw** window should now have the appearance shown in the diagram, provided the surface data spreadsheet is open.

HELP! The **Autodraw** window may be hidden behind one of the others. If this happens to be the case, from the **Window** menu header select **Tile Windows**

Plotting the on axis spot diagram

A spot diagram is a map of the pattern of rays incident on the image from a single object point, using the "geometrical approximation" which ignores the wave nature of light.

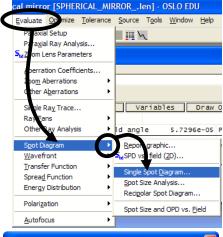
- From the **Evaluate** menu header select: **Spot Diagram**
- ► Single spot diagram...
- In the Print or plot spot diagram spreadsheet, click on three radio buttons as shown:
 - Plot spot diagram.

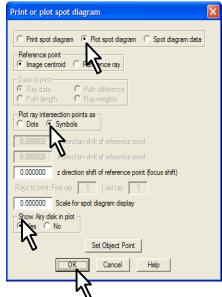
Plot ray intersection points as:

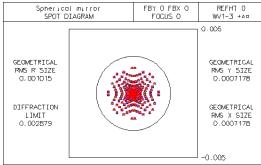
Symbols

Show Airy disc in plot:

Yes


- Leave the other entries as defaults; the axial (FBY = 0, FBX = 0) is the default so there is no need to use the Set Object Point button.
- Click on **OK**


The colored symbols in this diagram represent the distribution in the image plane of rays which evenly fill the pupil from a single point on axis. The three colors represent the three default wavelengths. The black circle represents the first minimum of the Airy disc, which is the intensity in the image of a perfect lens of the same aperture, in monochromatic light of the default central wavelength of $0.58756~\mu m$.


The most important aspect of the diagram is that all the rays fall within this circle. This is one of the criteria by which the assertion can be made:

Answer: Yes, the image quality at the focal point is "diffraction limited" - i.e. limited by the wave nature of light and not by aberrations.

HELP! Once again, if you have trouble finding the graphics window, from the Window menu header select Tile Windows or type the command tile into the command line.

• Close the surface data spreadsheet by clicking on the green tick \checkmark .

Listing the lens surface data

• Click on the **Len** header in the text window to list radii, thicknesses, apertures, glass types and surface notes:

```
*LENS DATA
Spherical mirror
 SRF
                      THICKNESS
                                   APERTURE RADIUS
                                                         GLASS
                                                                 SPE NOTE
          RADIUS
 OBJ
                     1,0000e+20
                                   1.0000e+14
                                                            AIR
 AST
       -16.000000
                      -8.000000
                                      1.000000 AS
                                                    REFL_HATCH
 IMS
                                    8.0000e-06 S
```

• Click on **Rin** to list the indices and thermal expansion coefficients:

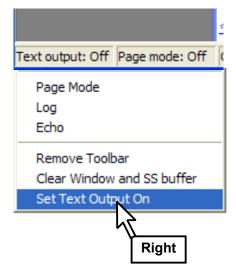
```
*REFRACTIVE INDICES
SRF
     GLASS/CATALOG
                           RN1
                                        RN2
                                                    RN3
                                                                VNBR
                                                                             TCE
     AIR
                        1.000000
                                     1.000000
                                                  1.000000
     REFL_HATCH
                        1.000000
                                     1.000000
                                                 1,000000
     IMAGE SURFACE
```

Click on Ape to list apertures and any special apertures.

```
*APERTURES
SRF TYPE APERTURE RADIUS
0 SPC 1.0000e+14
1 CMP 1.000000
2 CMP 8.0000e-06
```

• Click on **Wav** to give the wavelengths and the spectral weighting factors on each.

```
*WAVELENGTHS

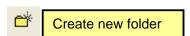

CURRENT WV1/WW1 WV2/WW2 WV3/WW3

1 0.587560 0.486130 0.656270
1.000000 1.000000 1.000000
```

• Click on **Pxc** to list the focal length and some of the operating conditions. *PARAXIAL CONSTANTS

```
Effective focal length: -8.000000 Lateral magnification: -8.0000e-20 Numerical aperture: 0.125000 Gaussian image height: 8.0000e-06 Working F-number: 4.000000 Petzval radius: -8.000000 Lagrange invariant: -1.0000e-06
```

HELP! There are occasions when the text output gets turned off inadvertently. This is most likely to occur if a CCL command is interrupted before it has had time to complete its task. If nothing appears in the text window when text output is expected, look at the first panel on the status bar at the bottom of the main window. If it reads Text output: Off, right click within the text window, and select the last menu entry: Set Text Output On.


Saving the lens

To create a new folder and save the lens in it:

- From the **File** menu header select **Save Lens as**
- Of the two buttons labeled **Library Directories** at the bottom of the **Save Lens As**

window, click on **Private**

At the top of the window, click on the icon:

- Type the name for the new folder: User_Guide and click on Open
- Under **File name** type: spherical_mirror
- Click on **Save** to save the lens with the file name spherical_mirror.len

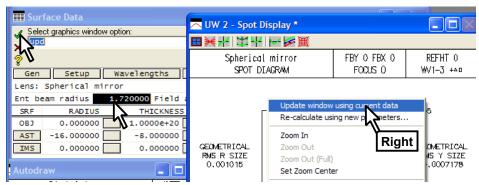
Note that OSLO is case insensitive, so this file cannot coexist with another file called, for

example, SPHERICAL MIRROR.len

- Close the surface data spreadsheet with the green tick \checkmark
- The lens will be stored in the private lens directory in the newly created \User_Guide subdirectory. The file is in ASCII format and contains the following text:

```
// OSLO 6.4 39660
                     0 16046
LEN NEW "Spherical mirror" -8 2
EBR 1.0
ANG
    0.0000572957795
DES "OSLO"
UNI 1.0
// SRF 0
AIR
TH
    1.0e+20
AP 9.999999995e+13
NXT // SRF 1
HTS
RD
    -16.0
TH
    -8.0
NXT // SRF 2
AIR
WV 0.58756 0.48613 0.65627
WW 1.0 1.0 1.0
END 2
DLRS 3
DLNR 0 11
```

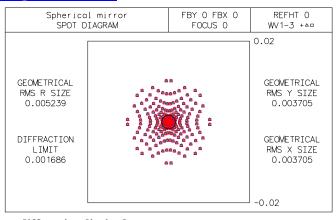
An explanation of these commands will be found in Appendix 1.



Changing the aperture

Question: If the aperture of the spherical mirror is increased to 3.44 mm is it still "diffraction limited" at the new aperture?

- In the surface data spreadsheet increase the entrance beam radius from 1 mm to 1.72 mm.
- Confirm with the green tick ✓.



Now recalculate the spot diagram:

- Right-click anywhere inside the graphics window containing the spot diagram plotted previously.
- Select Update window using current data:

to create the diagram shown at right.

Because the aperture has increased, the spot diagram is bigger (because of greater aberrations) and the Airy disc is smaller (it is inversely proportional to the aperture). Most of the rays therefore now lie outside the Airy disc circle.

Answer: No, it is far from diffraction limited.

Drawing the lens in the graphics window, with "zooming"

To draw the lens system in a graphics window:

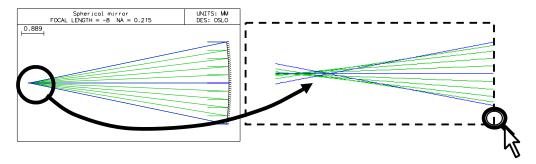
• From the **Lens** menu header select

Lens Drawing ...

► System


• Accepting all the defaults click on **OK**

Alternatively,


- Click on the first icon in the graphics window standard toolbar for Draw system (2D plan view).
 - Select Plan View ...

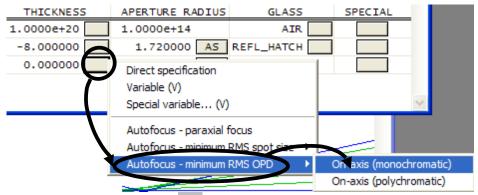
To view the paths of rays near the focus at a higher magnification:

 On the graphics window, leftclick-and-drag around the focus as shown below.

• Left click twice within the graphics window to return to the full frame image.

Note that the zooming action will work on all graphics windows *except* the **Autodraw** window.

Clearly a better focal plane can be chosen, a short distance to the right of the current one.

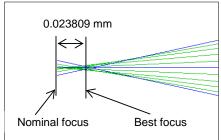

Finding the best focal plane

Question: At this new aperture, where should the focal plane be chosen to give the best image quality for green light on axis?

This can be found most quickly using the "autofocus" facility in the surface data spreadsheet, one of a number of built-in optimization functions.

- Open the surface data spreadsheet.
- Click on the gray button next to the thickness for the image surface (surface **IMS**).
 - Select Autofocus minimize RMS OPD ... > On-axis (monochromatic)

In this context, RMS OPD refers to the root mean square "optical path difference" (or wave aberration). This autofocus action has the effect of finding the focal plane which minimizes the RMS OPD and entering the necessary displacement as the thickness for the image space. The thickness for the space preceding the image space is left unchanged.



Listing the lens data - click on the **Len** header in the text window - gives the extent of defocus needed:

```
*LENS DATA
Spherical mirror f/2.33
                      THICKNESS
 SRF
          RADIUS
                                   APERTURE RADIUS
                                                          GLASS
                                                                 SPE NOTE
 OBJ
                     1.0000e+20
                                    1.0000e+14
                                                            AIR
 AST
       -16.000000
                      -8.000000
                                      1.720000 AS
                                                    REFL HATCH
                        0.023809
                                      0.005127 s
 TMS
```

The value listed for the defocus, shown as the thickness at the image plane, is 0.023809 mm. To get the actual distance from the mirror to the image it is necessary to add the defocus value to the nominal distance of -8 mm.

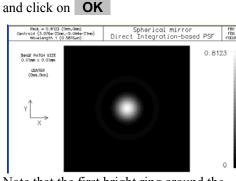
This is the only case in OSLO where an entry in the thickness column of the surface data spreadsheet for a surface affects the axial position of that surface rather than the surface which follows.

Answer: The best focus at an aperture of f/2.33 is at 7.976 mm from the mirror.

Plotting the on axis point spread function (PSF)

Question: Is the image "diffraction limited" at the new focal plane?

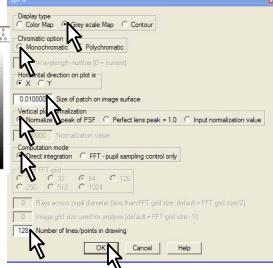
The evaluations carried out hitherto only show approximations to the actual distribution of light in the image of a point source, since a spot diagram takes no account of diffraction.


To plot the true distribution of light in the image of a monochromatic point source, that is to say, the point spread function:

- From the **Evaluate** menu header select:
 - Spread Function
 - ► Plot PSF Map/Contour..

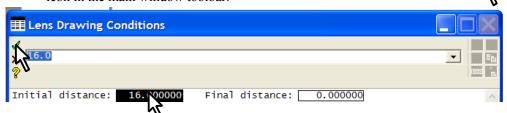
In the **Sprd** window which opens:

- Click on the radio button
 - Gray scale map
- Click on the radio button
 - Monochromatic
- Type in 0.01 for theSize of patch on image surface.
- Click on the radio button:
 - Normalize to peak of PSF
- Click on the radio button:
 - Direct integration
- Type in 128 for


Number of lines/points in drawing

Note that the first bright ring around the central maximum can just be seen.

Note also the figure at the top of the scale on the right: **0.8123**. This figure is called the "Strehl ratio," which is the intensity at the central peak of the image of a point source, normalized to that of

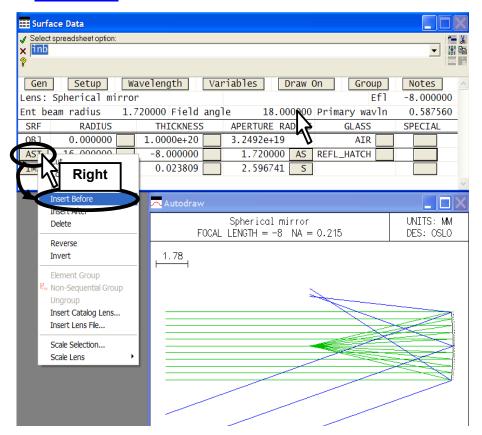

the Airy diffraction pattern of an ideal lens. The Maréchal criterion states that if the Strehl ratio exceeds 0.8, a lens system may be described as "diffraction limited".

Answer: Yes, the image is diffraction limited on axis at the new focal plane.

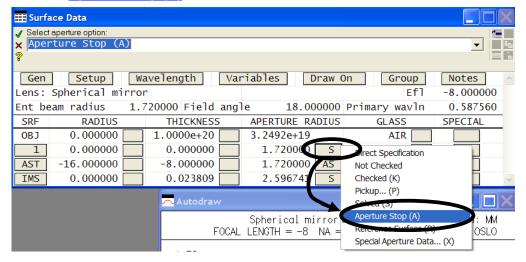
Edit Lens Drawing Conditions

Extending the rays in the lens drawing

• Open the **Lens Drawing Conditions** spreadsheet by clicking on the icon in the main window toolbar.



- After Initial distance enter 16.
- Close the spreadsheet with the green tick \checkmark .


Calculating the off axis optical path difference (OPD)

Question: What is the maximum OPD at full field for a semi-field angle of 18° (total field angle 36°)?

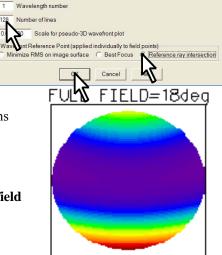
- Open the surface data spreadsheet.
- Enter 18.0 degrees as the (semi-field) Field angle
- Left click on the gray **SRF** button for surface **1** (**AST**) to highlight the whole row.
- Right click to bring up the menu of options.
- Select Insert before to insert a new surface as surface 1.

- Under APERTURE RADIUS for the new surface 1, click on the gray button.
- Select Aperture stop (A)

The aperture stop indication (**AST**) on the gray button under **SRF** will now move to surface 1, which at the moment is in contact with surface 2.

Note that the aberrations of the rays in the off-axis beam (drawn in blue) are so large that they can easily be seen in the lens drawing.

To calculate the optical path difference, or wave aberration, over the whole pupil for three field points (on axis, 0.7 field and full field):


From the Evaluate menu header select: Wavefront ▶ Report graphic...

and in the dialog box which opens:

- Enter 128 as the Number of lines
- Select Reference ray intersection
- Click on **OK**

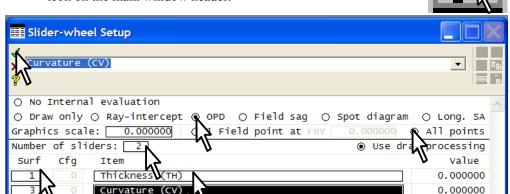
Note the peak-to-valley figure of 37.05 wavelengths under the map for the full field wave aberration.

Answer: The axial performance is better than the standard criterion of a quarter of a wavelength for the diffraction limit, but at full field off axis the maximum OPD is 37 wavelengths.

P-V 37 05 RMS 7 722

Open the slider wheel spreadsheet

Optimizing


The aperture stop is the limiting aperture of the axial beam. Its longitudinal position determines the beam which is selected to form the off-axis image, and if the field is large, this can have a significant effect on image quality.

Also the image has been assessed only over a plane surface - this is of course the usual convention. For this exercise, however, we will investigate the benefits of allowing the image to become curved.

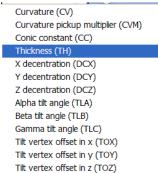
Question: Where should the stop be placed, and what curvature of the image is needed, to obtain the best performance over the whole field?

The answer to this question will demonstrate slider wheel optimization, one of the most useful features of OSLO.

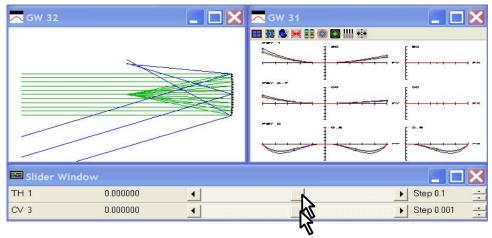
- Close the surface data spreadsheet.
- Open the **Slider-wheel Setup** spreadsheet, by clicking on the icon on the main window header.

The entries above the line define the contents of the window(s) which will be displayed during slider-wheel optimization.

- Select OPD (optical path difference, another name for wavefront aberration)

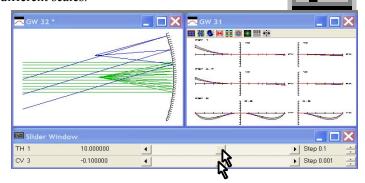

callback CCL

Entries below the line determine which parameters will be adjusted with slider-wheels:

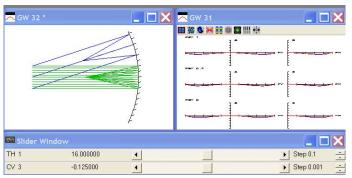

• Leave the default of **2** for the **Number of sliders** (up to 32 can be defined at any one time).

- On the first line, enter 1 under Surf and type th
 in the box under Item. Alternatively click on the
 box and select Thickness (TH) from the menu of
 options.
- On the second line, enter 3 under Surf and type
 under Item.

The two graphics window which open, **GW31** and **GW32**,



are specific to slider-wheel optimization. The scrollbar at the right of each slider wheel track can be used to adjust the step increment of the slider-wheel motion. Changing the step size also has the effect of centralizing the slider-wheel in the track.



- Watching the lens drawing in GW 32, and the plots of the optical path difference in GW 31, move the upper slider to the extreme right (th 1 = 10) and the lower slider to the extreme left (cv 3 = -0.1).
- Once again, open the Slider-wheel Setup spreadsheet, by clicking on the icon. However this time just close it again immediately. This has the effect of centralizing the two slider-wheels and re-drawing both windows with different scales.

Although the OPD graphs give no indication of scale, it can be seen that the performance is much improved.

Repeat the sequence once more until the best result is given. This should be when TH 1 = 16.0 mm and CV 3 = -0.125 mm⁻¹

Answer: The aperture stop must be at the centre of curvature of the mirror, and the image surface must be a sphere with its centre at the aperture stop.

Rpt_wvf

Wavelength number

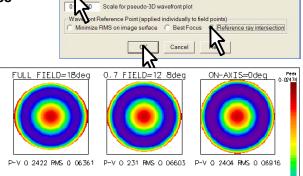
Assessing the final design

To evaluate the optical path difference of the new system, once again:

• From the **Evaluate** menu header select:

Wavefront ► Report graphic...

and in the dialog box which opens:


- Enter 128 as the Number of lines
- Select Reference ray intersection
- Click on **OK**

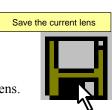

The peak-to-valley wave aberration at the edge of the field is less than a quarter wavelength, so the lens is diffraction limited over the whole (curved) field.

Listing the data

-7.976000

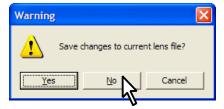
To list the correct prescription of the final design, the image separation needs to be adjusted. In the command line:

- Enter the command: th 3 0;rtg to give the final listing (again note the spaces):
- TH -*LENS DATA
 Spherical mirror


SRF 2:

SRF 3:

TH

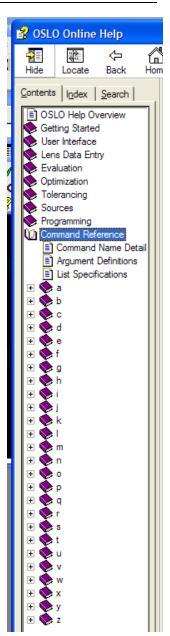

 RADIUS	THICKNESS	APERTURE RADIUS	GLASS	SPE
	1.0000e+20	3.2492e+19	AIR	
		1.720000 s	AIR	
-16.000000	-7.976000	1.720000 AS	REFL_HATCH	_
-8.000000		2.596719 s		

• Click on the save lens icon in the main toolbar to save the lens.

Exiting the program

- From the File menu header select Exit. If any more changes have been made a message label will give a warning to save the lens, otherwise those changes will be lost.
- Click on **No** and the program terminates.

Conclusion


This introduction shows that OSLO commands can be accessed from the menu headers, from the text window headers, from icons or entered directly into the command line. Commands can also be combined into programs in the languages SCL or CCL, as will be shown in chapter 8.

Command names are important for accessing the documentation in the on-line help. Here are some of the commands that have been used (either explicitly or via the menus and icons) in this chapter:

file_new	Opens a new lens file
uoc drl	Updates lens drawing conditions
pls	Plots spot diagram
len	Lists lens data
save	Saves lens
drl	Draws lens
auf	Autofocus
sprd	Plots the point spread function
lse	Opens the surface data spreadsheet
rpt_wvf	Plots wavefront map at 3 field points
swe	Opens the slider-wheel spreadsheet
th	Changes a thickness
rtg	Lists radii/thicknesses/glass types
exit	Terminates OSLO.

To obtain a full list of commands:

- From the **Help** menu header select OSLO Help F1
- Select the **Contents** tab and click on **Command** Reference.
 The commands are listed in the alphabetic sub-directories shown here.

Chapter 2 - Configuring OSLO

Introduction

Some ways in which the user interface can be adapted will be demonstrated in this section,. It is recommended that these are implemented before proceeding with the remainder of the exercises in this user guide.

Toolbar menus

This section shows how the toolbars in the main window, the text window, and the graphics window may be populated with icons/tools.

Main window

On first use of the program, bring up the full range of icons into the main window toolbar:

📰 () 🗗 🚅 🤍 🐠 🖠

New graphics window Switch text windows

SS right-click actions...

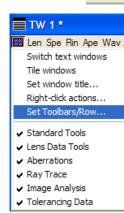
Set Toolbars/Row...

✓ Standard Tools

Optimization Tools

Advanced Analysis

✓ Tolerancing
 ✓ Gaussian Beams
 ✓ Extended Sources


- On the left of the main window toolbar, click on the blue and red window **Setup Window/Toolbar** icon.
- In the drop-down menu which appears click on Optimization Tools.
- Repeat for all the other items in the menu (not all the toolbars listed will be available in Light or EDU versions)
- Click on Set Toolbars/Row... and, if it is not already 3, enter
 3.

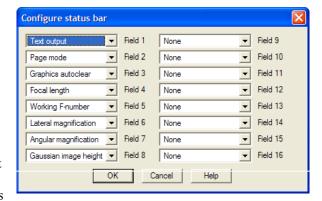
Text window

Click on the blue and red window **Setup Window/Toolbar** icon on the left of the text window header.

- In the drop-down menu which appears click on Lens Data Tools.
- Repeat for all the other items in the menu.
- Click on Set Toolbars/Row... and enter 3 for Maximum number of toolbars on first row.
- Click on **Switch text windows** to open a second text window, if desired. It will have the same toolbar choices as the first. Only two text windows may be opened at a time.

Graphics window

Each graphics window supports only a single toolbar, but up to 31 additional graphics windows may be opened, each with its own choice of toolbar.


- From the Window menu header select:
 Graphics ➤ New
- In the header of the graphics window which opens, click on the **Setup Window/Toolbar** icon.
- Select one of the toolbar options.
- Repeat twice more to open a total of four graphics windows. The current one always has a dark blue bar at the top and an asterisk after the title; the header bars of the others are light blue.

The status bar

The status bar extends across the bottom of the main window for its full width. The following is a suggestion - there are many other possibilities.

- Click twice on the status bar, or from the **Window** menu header select **Status Bar...**
- Leave the parameters for the first three fields unchanged.
- Set the parameters for fields 4 to 8 as follows:
 - 4. Focal length
 - 5. Working F-number
 - **6.** Lateral magnification
 - 7. Angular magnification
 - **8.** Gaussian image height

For each field, click on the tab on the right hand side of the field, and then select the option from the dropdown menu. This facility is

especially useful for keeping an eye on paraxial quantities during optimization.

• Click on **OK** to close the window.

It is not advisable to set more than eight entries as the status bar is limited to 127 characters.

Preferences

Preferences are parameters which control many of the functions of the program operation, regardless of what lens is currently open. Status bar settings and preferences, once set, are preserved after exiting the program. They are stored in a text file called **oslo.ini** in the directory /private. This may be read with a text editor, but it must not be altered.

Preferences may be displayed using the **show_preference** command - e.g.

```
shp dsgn
```

or incorporated into print statements - e.g.

```
printf("Current lens directory is %s\n",str_pref(cdir)).
```

• Before starting to define preferences, ensure that the surface data spreadsheet is closed.

Designer name (dsgn)

Several of the graphics windows include a space where the designer's name is listed. The default for new lenses is **OSLO**. To change it:

- From the File menu header select Preferences ➤ Set Preference...
- From the gray list, select **Designer**
- On the prompt **Enter string preference** type [your_name] (with a maximum of 10 characters, no spaces) into the command line
- Click on the green tick. ✓

Alternatively, just type stp dsgn "[your_name]" in the command line and click on the green tick Vote that this will not affect the current lens in storage, but only new lenses created after the change.

ISO10110 drawing settings (adr1, adr2, adr3, edcm)

On ISO 10110 drawings there is a space for three lines of standard information, which normally consists of your company's name and address:

- From the File menu header select Preferences > Set Preference...
- Select Address1
- Type [your_company_name] (maximum of 36 characters) in the command line under **Enter string preference**:
- Alternatively, in the command line type: stp adr1 "your_company_name".
- Close with the green tick ✓
- Similarly for Address2 and Address3

```
e.g. stp adr2 "your_street_address" stp adr3 "your_town"
```

Commas may be specified instead of decimal points on ISO 10110 drawings:

- From the File menu header select Preferences ➤ Set Preference...
- Select Element_drawing_commas
- Select On under Select Boolean preference:

Graphics (gems, gacl, gfwb, glab, grax, gfbw, drra, pens)

Many of the preferences control the appearance of graphics output. For example, when cutting and pasting graphics into Windows, the scale is generally too big for convenience. A better scale is given if the **gems** preference is set to **On**:

- From the File menu header select Preferences ➤ Set Preference...
- Select Graphics_emf_sizing
- Select On under Select boolean preference:

Several other graphics preferences are collected together for easy access:

- From the File menu header select Preferences ➤
 Preference groups... ➤ Graphics
- Modify the entries in the popup box shown in the illustration as required.
- Click on OK.

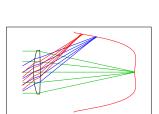
Graphics alternate mode (gfam)

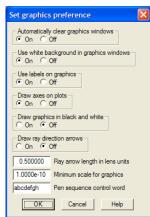
If the aspect ratio of exported graphics is reversed (landscape <-> portrait) then look to see if **gfam on**

(**Graphics_alternate_mode On**) has inadvertently been set. If so:

- Enter the command: stp gfam off
- Close with the green tick ✓

No error boxes (noeb)


Whenever an error message box appears, it needs to be cleared immediately by clicking on **OK**. This can be a problem on occasions, such as during slider-wheel optimization.


It is possible for the user to suppress these error boxes permanently. If desired:

- From the File menu header select Preferences►Set Preference...
- Select No_error_boxes
- Under Select boolean preference: select On

Tangent check (tanc on)

- Enter the command tanc on in the command line. This
 will turn on the facility which permits rays to be drawn to
 highly aspheric surfaces, such as the one illustrated here.
- Close with the green tick ✓

Compile CCL

To avoid potential problems, it is a good idea to compile all CCL files before starting to use the program for serious work. To do this:

- From the **Tools** menu header select **Compile CCL** ...
- In response to **Select compile access**: choose **Public**.
- In response to **Select compile option**: choose **All**.
- In response to Enter ccl opts: leave the default entry unchanged e.g.:
 -D _OSLO_EDU_ -D _OSLO_LIGHT_ -D OPENGL_GRAPHICS
- Close with the green tick ✓
- Check that the public CCL directory has compiled without error.

```
TW 1 *

Len Spe Rin Ape Wav Pxc Abr Mra Chf Tra Sop Ref Fan Spd Auf Var One-No Slv Pkp Ape Pxt Chr Sei Fif Ref bot chf top skw Sps Wvf Mtf Psf Srf Conv.

**CCL COMPILATION MESSAGES:
No errors detected
```

Repeat for the Private directory, or (not for users of OSLO EDU version) click on the icon to "Compile all private CCL".

• Once again confirm that the **No errors detected** message has appeared in the current text window.

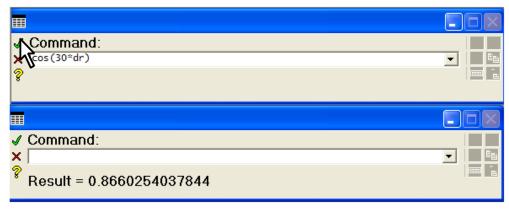
If an error message is given, then it will be necessary to correct, suppress or delete the file whose name is shown. For example, the error message:

```
TW 1 *

Len Spe Rin Ape Wav Pxc Abr Mra Chf Tra Sop Ref Fan Spd Auf Var C

Ref bot chf top skw Sps Wvf Mtf Psf Srf Comen

*CCL COMPILATION MESSAGES:
eval_ctn_version2.ccl 9: Duplicate procedure definition
```


indicates the error occurs on line 9 of the file **eval_ctn_Version2.ccl** in the **private/ccl** directory. Further details are given in chapter 8.

Chapter 3 - The command line

Arithmetic calculations

Simple arithmetic expressions can be evaluated with the result given in the message bar.

- If the surface data spreadsheet is open, close it by clicking on the green tick \checkmark .
- Type cos(30*dr) and close with **Enter** or the green tick ✓

• Enter atan2(sqrt(3),1)/dr

The following table gives all the arithmetical functions available in OSLO EDU:

Mathematical: pow (power), exp, log, log10, sqrt, j0,

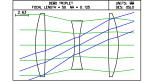
j1 (Bessel functions)

Trigonometry (all angles are in radians):

sin, cos, tan, asin, acos, atan2

Rounding and limits: fabs, rint, r2int, round, min, max,

floor, ceil

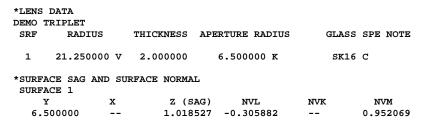

Random numbers: rand (uniform), grand (Gaussian with zero mean)

OSLO commands

The main purpose of the command line is to execute OSLO commands.

- Enter **file_open** and close with the green tick ✓
- If the message Save changes to current lens file? appears, click on No.

 In the Open lens file window which opens, under Library directories at the bottom, click on Private.



"sag"

- Click on trip.len
- Click on Open
- If the surface data spreadsheet opens, close it with the green tick ✓.

Multiple commands are stacked with semicolons. For example, if we require to calculate the "sag" of the first surface of the triplet (that is, the distance measured along the axis from the plane through the axial point to the plane through the edge of the clear aperture):

Enter rtg 1 1;sag 1 6.5

Commands can also be issued in a way that initiates a dialog for subsequent parameters:

- Enter sag ?
- In the command window, in reply to the prompt Enter surface number: enter 1
- In reply to the prompt **Enter y**: enter 6.5
- In reply to **Enter x**: leave the default value 0
- Close with the green tick ✓

```
*SURFACE SAG AND SURFACE NORMAL
SURFACE 1
Y X Z (SAG) NVL NVK NVM
6.500000 -- 1.018527 -0.305882 -- 0.952069
```

Assigning values to predefined variables

Values can be allocated, using the command line, to predefined variables. Predefined variables are a ... h, o ... z (real) i ... n and ii ... nn (integer). Also pre-defined are seven real arrays with indices 0 - 1999, ua[] ... za [] and three string arrays of 256 characters astr, bstr, cstr. There are also two predefined constants, dr (degrees to radians conversion factor), on (=1), off(=0) and pi. All are case-insensitive.

Allocations remain until OSLO is closed and restarted.

For example we can calculate the z ("sag") value listed above:

• Enter r=21.25; y=6.5; z=r-r*cos(asin(y/r))

• Enter z.

Result = 1.0185269938148

Here the value of z which appears in the message area is the "sag" of the previous example.

Take care if you use \mathbf{c} , \mathbf{f} , \mathbf{o} , \mathbf{r} or \mathbf{v} as they are also OSLO command words. \mathbf{pi} is π , but it is also an OSLO command. So do not enter \mathbf{pi} on its own, but rather include it in an arithmetic expression.

• Enter: +pi

Result = 3.1415926535898

Take care when arithmetical calculations are carried out while any spreadsheet is open. The results of calculations will, if valid, be used as the contents of the cell which is currently highlighted.

Printing

Results of printing appear in the current text window:

• Enter: prt At height y sag is z

At height 6.500000 sag is 1.018527

For more formal presentation, printed output can be formatted. This command uses the formatted print command **printf** to print the volume of the "cap" enclosed by surface 1.

• Enter: aprintf("Volume=% .3f cu.mm.\n",pi*z**2*(r-z/3))
Volume= 68.149 cu.mm.

The first argument is a format string. In it, % .3f is a format specification for the double precision numeric value; the space after the % reserves a space for a minus sign (if any), 3 gives 3 places after the decimal point and f is the conversion character for floating point format. Other characters in a format string are printed unmodified, until the final \n which outputs a new line.

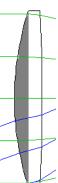
(sqrt(3),1)/dr 0*dr)

1 6.5 0 1 1; sag 1 6.5 0 _open 2(sqrt(3),1)/dr 30*dr)

The history button

Previous commands can be called up, for repeating a command, or correcting it.

- Click on the history button at the end of the command line.
- Alternatively, press **Shift- F4.** This is known in the


documentation as a keyboard shortcut; some others are listed below.

• Enter: **prh** to list the last 40 entries in the history buffer.

Keyboard shortcuts

F1

Open the online help

30	The command line	Chapter 3
Ctrl+N	Open a new lens	
Ctrl+O	Open an existing lens	
Ctrl+S	Save the lens in its current file	
In the command line,		
Ctrl+X	Cut selected text	
Ctrl+C	Copy selected text	
Ctrl+V	Paste selected text	
Shift+F4	Show the history buffer	
Ctrl+PgUp	Scroll through the history (Ctrl+PgDn to scroll back)	
In the text editor,		
Ctrl+E	Execute the selected text	
Ctrl+G	Go to the indicated line number	
Ctrl+Z	Undo the last edit	
Alt+F3	Find text (F3 to find again)	
Ctrl+R	Replace text (Ctrl-T to replace again)	
In a spreadsheet,		
Shift-spacebar	Insert a new line before the current line	e

The message area

The message area under the command line can be used for formatted output. For example to display a string preference:

• Enter:

message("Private dir: %s",str_pref(prid))

Private dir: C:\Program Files\OSLO\Prm64\private

The message area is where error messages can be printed. The message command also converts error numbers to strings:

- Enter: sop 9 0 0
- Click on **OK** in the error box.
- Enter: errno

Result = -3152

 Different versions of \OSLO have different error numbers. To decode an error number, enter: message

errno Again, click on **OK** in the error box before proceeding.

Error in set_object_point: Warning: reference ray trace failed. Total internal reflect

Executing CCL command sequences

Valid CCL command sequences which use the pre-defined variables listed above, can be executed within the command line. The total length of the command string must not exceed 255 characters.

Enter:

```
prt lid;for(i=0;i<=ims;i++)prt cv[i] th[i] rn[i][1]</pre>
```

with the result:

```
DEMO TRIPLET
            1.0000e+20
                          1.000000
   0.047059
              2.000000
                          1.620410
  -0.006303
              6.000000
                          1.000000
  -0.049383
             1.000000
                         1.616592
   0.051813
              6.000000
                          1.000000
  0.007080
              2,000000
                          1,620410
             42.950000
  -0.057854
                          1.000000
                          1.000000
```

Here the count variable, i, is a pre-defined integer.

The system data variables <code>lid</code> (the lens identifier), <code>cv[i]</code> (the surface curvature, that is, the reciprocal of the radius), <code>th[i]</code> (the separation from surface i to surface i+1) and <code>rn[i][1]</code> (the refractive index in the space after surface i at the first wavelength) are all examples of system data variables which can either be printed, or used in arithmetic expressions or CCL programs. A list of such variables is given in the next section.

A system data variable such as **th** cannot, however, be changed by a simple variable assignment statement such as **th[3]=2.0**. An attempt to do this will give the error message:

```
Input error
Protected variable `th' may not be changed
```

Rather, it must be changed using the dedicated command which has the same name as the variable. For example:

Enter th 3 1.05;rtg

A new image surface may also be defined temporarily in this way:

• Enter ims 3;rtg

The remaining surfaces are unaffected, but they will be lost unless the lens is restored before the lens is saved again:

Enter ims 7;rtg

Other commands can be used to change the lens - e.g. the 10th system note, used as a label in the public lens database:

Enter sno10 TRIPLET; opc sno

```
*CONDITIONS: SYSTEM NOTES
10: TRIPLET
```

A list of lens update commands is given in Appendix 1.

Alphabetic list of system data variables

The following is a partial list of the system data variables. To obtain a complete list of all variables exported from OSLO:

- From the **Help** menu header select **OSLO Help F1**
- Under the Contents tab select Programming ► Accessing Data
 ►CCL Global Data

aac	special aperture action	cvpksn	curvature pickup surf
aan	special aperture angle	cvtyp	curvature type
ad	aspheric coefficient in r4	CVX	toric curvature
ae	aspheric coefficient in r ⁶	dct	decenter tol
af	aspheric coefficient in r ⁸	dcx	x decentration (local)
afo	afocal flag	dcy	y decentration (local)
ag	aspheric coefficient in r ¹⁰	dcz	z decentration
agn	special aperture group	des	designer name
amo	aberration mode	df	diffractive surf coefficients
ang	field angle	dfcsn	diffractive surf pickup
ap	apertures	doe	diffractive surf type
apchk	aperture checking flag	dor	diffraction order
appksn	aperture pickup surface	drw	surf drawing option
apspec	aperture spec: ebr, nao, etc.	dt	decenter-tilt order flag
aptyp	aperture type	dth	grin step size
as0,as1	aspheric surf coefficients	dwv	design wv (diffractive surf)
asi	alternate surf intersection flag	dxt	x-decenter tol
asp	aspheric surf type	dzt	axial surf shift tol
ast	aperture stop surf	ebr	entrance beam radius
atp	special aperture type	errno	message nbr for last error
avx1	special ap. x vertex 1	evza	image evaluation coord. system
avx2	special ap. x vertex 2	fcc	Fresnel surf substrate conic
avx3	special ap. x vertex 3	fcv	Fresnel surf substrate curvature
avx4	special ap. x vertex 4	fldspec	field spec: obh, ang, etc.
avy1	special ap. y vertex 1	fno	image space working f-number
avy2	special ap. y vertex 2	frn	Fresnel surf flag
avy3	special ap. y vertex 3	gc	global coord. ref. surf number
avy4	special ap. y vertex 4	gcs	global coord. reference surf
ax1	special ap. ax1	gdt	gradient index medium type
ax2	special ap. ax2	gih	Gaussian image height
ay1	special ap. ay1	glpksn	glass pickup surf
ay2	special ap. ay2	gltyp	glass type
bcr	use base coord. for coord	gmz	gradium blank thickness
ben	tilt and bend flag	gnz	gradium coefficient
caa	component aper alpha tilt tol	gor	grating order
cab	component aper beta tilt tol	goz	gradium offset into blank
CC	conic constant	gra	gradium coefficient
cca	component coc alpha tilt tol	grb	gradium coefficient
ccb	component coc beta tilt tol	grc	gradium coefficient
cct	conic constant tol	grd	gradium coefficient
cdx	component x-decenter tol	grpcode	group code
cdy	component y-decenter tol	grptype	group type
cns	cone slope	gsp	grating spacing
curwav	current wv number (base 1)	gwv	gradium dispersion data ref.
CV	curvature	hor	hologram diffraction order
cvdat	curvature solve/pickup datum	hv1	hologram obj. real/virtual
cvmult	curvature pickup datum	hv2	hologram ref. real/virtual

Chapter	3 - The command line		33
hwv	hologram construction wv	slc	Sellmeier gradium coefficient
hx1	hologram object x coord.	spl	no. of radial spline surf zone
hx2	hologram reference x coord.	splpts	number of spline points
hy1	hologram object y coord.	spt	spherical form tol
hy2	hologram reference y coord.	srftyp	surf type
hz1	hologram object z coord.	SS	radial spline slope
hz2	hologram reference z coord.	tat	tla tilt tol
ims	image surf number	tbt	tlb tilt tol
ims_1	image surf number minus one	tce	thermal coefft of expansion
irt	irregularity tol	tct	tlc tilt tol
ldp	pen for lens drawings	tem	system temperature (deg C)
lensym	lens symmetry flag	th	thickness
lid	lens identifier	thdat	thickness solve/pickup datum
nao	object space numerical ap.	thmult	thickness pickup datum
nap	image space numerical ap.	thpksn1	thickness pickup surf
nr1	grin coefficient in r ²	thpksn2	thickness pickup surf
nr2	grin coefficient in r ⁴	tht	thickness tol
nr3	grin coefficient in z ⁶	thtyp	thickness type
nr4	grin coefficient in z ⁸	tir	total internal reflection flag
numsap	number of special apertures	tla	tilt about (local) -x axis (degs)
numw	number of wavelengths	tlb	tilt about (local) -y axis (degs)
nz1	grin coefficient in z	tlc	tilt about (local) +z axis (degs)
nz2	grin coefficient in z ²	tlt	tilt tolerance
nz3	grin coefficient in z ³	toric	toric type
nz4	grin coefficient in z4	tox	offset of tilt vertex in x
obh	object height	toy	offset of tilt vertex in y
pfl	perfect lens focal length	toz	offset of tilt vertex in z
pfm	perfect lens magnification	trr_fbx	fractional x object coord
pre	system pressure (atm)	trr_fby	fractional y object coord.
puk	image space axial ray slope	trr_fbz	fractional z object coord.
rco	coord. return surf number	trr_fds	field point data
rd	radius of curvature	trr_fpt	field point number
rdt	radius tolerance	trr_fxrf	reference surf x coord.
rdx	toric radius of curvature	trr_fyrf	reference surf y coord.
rfs	reference surf	ttun	tilt tolerance units
rn	refractive indices	twl	tol fringe wavelength
rnt	refractive index tol	txyc	couple x to y tols number of mm in current units
rod	extruded surf spec	uni	number of mm in current units
rotsym	rotational symmetry flag	varnbr	
rtf sasd	radius from test glass file	vnt wav	Abbe V-number tol
	source astigmatic distance		current wavelength number
sh ska	radial spline height	WV WW	wavelengths
ska skb	Sellmeier gradium coefficient Sellmeier gradium coefficient		wavelength weights Zernike phase surf coefficients
sko	Sellmeier gradium coefficient	zr zrt	Zernike priase sun coemcients Zernike srf reference ray trace
sko sla	Sellmeier gradium coefficient	211	Zernike on reference ray trace
sla slb	Sellmeier gradium coefficient		
SID	Semineter gradium coemicient		

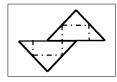
Also in the online Help facility, under the Contents tab select
 Programming ➤ Accessing Data ➤ Other Data to find the definitions of the following read-only variables:

beg_selection	cfg	current_pen	cursnbr	end_selection
fptnbr	gfx_window	glass_name	lensym	maxcfg
nbr_pens	numw	oprnbr	raynbr	sdsnbr
srfssopen	ssb	surface_note	system_note	txt_window
varnbr	wav			

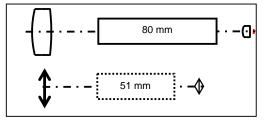
Chapter 4 - Lens data entry

8 x 30 binoculars: Specification

The task which will be used to demonstrate lens data input is the problem of modeling the


binoculars shown in the photographs, with 8x magnification, a 30 mm diameter entrance pupil, and a field of view of 6°. Measurements give an overall length from the front of the objective to the back of the eyepiece of 103 mm. The distance from the front objective to the eyepiece mounting plate is 73 mm, and the

offset between the optical axis of the objective and the optical axis of the eyepiece is 28 mm.

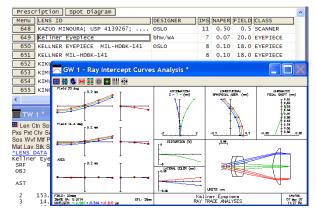

Calculations

First of all we will calculate the sizes of the Porro prisms. Since the offset between the two optical axes is 28 mm, the path perpendicular to the axis of the binoculars must be 20mm in each prism. The total glass pass in each prism must therefore be 40mm, and the total glass path in the two prisms (shown here in an opened-out-view) 80 mm.

The glass which is most commonly used for prisms in the better quality binoculars is Schott

BaK4, which has a refractive index of 1.57. The prism path length of 80 mm will then have an "air equivalent" path length of 80/1.57 = 51 mm. This needs to be added to the physical length (103 mm) to give a total air equivalent optical path from back to front of 154 mm. Now, making an allowance of 19 mm for the finite thicknesses of both

eyepiece and objective gives a path between the principal planes, or equivalent thin lenses, of 135 mm. So, to obtain the desired magnification of x8, the focal lengths required are 120 mm for the objective and 15 mm for the eyepiece.

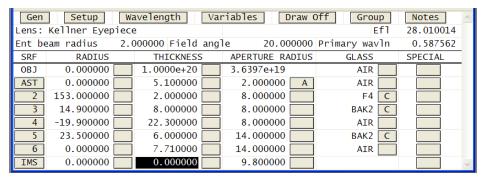

Choosing an eyepiece

The eyepiece in most common use in prismatic binoculars is the Kellner. This consists of a plano-convex single element lens, with a cemented doublet near the eye. An eyepiece suitable for this application can be found in the book "Optical Design For Visual Systems" by Bruce H. Walker.

Users of OSLO Standard and OSLO Premium:

- Close the surface data spreadsheet.
- From the **File** menu, select **Lens** database,
- Select Public.

- In the window that opens, click on **LENS ID** and choose **Sort Up**.
- Using the scroll bar on the right find the lens with LENS ID "Kellner Eyepiece" As a check, the designer is shown as bhw/WA, the image surface number is 7.
- Click on this line to call up the lens. The aberration curves are drawn automatically, and the listing is given in the text window when **Prescription** is selected.



- Open the surface data spreadsheet, and click on the gray **Wavelength** button.
- Right click to get the choice of pre-defined wavelengths, and select d, F and C respectively for the three wavelengths.
- In the text window click on **Wav**

*WAVELENGTHS CURRENT WV1/WW1 WV2/WW2 WV3/WW3 1 0.587562 0.486133 0.656273 1.000000 1.000000 1.000000

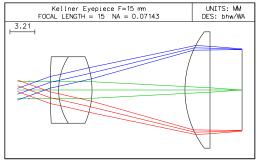
Users of OSLO Light and OSLO EDU:

- From the menu header, choose **File > New lens**.
- Leave the file name as untitled, leave Custom lens as the option, and enter 6 as the number of surfaces.

• Fill in the surface data spreadsheet entries as shown. Check the Efl value to confirm that the data entries are correct.

All users:

Note that the eyepiece has an object at infinity and an image at a finite distance. In other words, we are tracing the rays from the eye to the intermediate image, in the reverse direction of travel of the light. Surface 1 is defined as the aperture stop.


Scaling the eyepiece

The eyepiece must now be scaled to give the required focal length of 15 mm:

- In the surface data spreadsheet, click on **Draw Off** to open the Autodraw window (at which point **Draw Off** becomes **Draw On**).
- After Lens: assign a title: Kellner Eyepiece F=15 mm
- Right click on any of the surface buttons on the left, and choose Scale Lens►Scale To New Focal Length ...
- Insert 15 (this lens is already specified in the default units of mm).
- Click on OK.

*TEMC DATA

 List the lens by clicking on Len in the text window.

"LENS DA	MIM					
Kellner	Eyepiece	F=15 mm				
SRF	RADIUS	THICKNESS	7	APERTURE RADIUS	GLASS	SPE NOTE
OBJ		5.3552e+19		1.9491e+19	AIR	
AST		2.731166		1.071046 A	AIR	Ent Pupil
2	81.934981	1.071046		4.284182	F4	С
3	7.979289	4.284182		4.284182	BAK2	C
4 -	-10.656903	11.942157		4.284182	AIR	
5	12.584785	3.213137		7.497319	BAK2	С
6		4.128880		7.497319	AIR	
IMS			v	5.221347		*

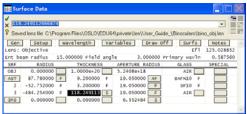
• Save the eyepiece in the **private/len/User_guide** directory with the name **bino_ep.len.**

Choosing a catalog objective

Rather than design an objective from scratch, the task will be to locate a suitable lens in the lens manufacturers' catalogs provided with the program. The focal length required is about 120 mm. While the entrance pupil diameter is 30 mm, allowance must be made for mounting, say 3 mm on the radius (larger than on an internal lens because of the need to provide a seal against moisture).

- Click on the third icon on the main window toolbar, which is the symbol for a new lens.
- In the dialog box which opens, click on **OK**.
- In the surface data spreadsheet which opens, after Lens: assign a title (e.g. Objective)
- Change **Ent beam radius** to **15** mm.
- Change **Field angle** to **3** degrees.

- Left click on the gray surface button in the first column for surface 2 (**IMS**) to select the surface.
- Right click.
- From the drop-down menu, choose the option Insert Catalog Lens...


In the window which appears, make the following selections:

- First, at the bottom of the screen, for Catalog: select NEWPORT-LEN
- Leave default Sort By

 EFL.
- Enter the Central EFL (focal length),
 120 mm and +/- Range 5 mm
- Enter the Central Dia, 36 mm and
 +/- Range 5 mm.

- Click on the only lens listed, with focal length **125** mm, part number **NPAC074**.
- Click on the green tick, and the window will close.
- Click on the gray button **Group** at the top of the surface data spreadsheet to show the individual surfaces.
- Delete the non-functional first surface: Left click on the gray Srf button to select the line, right click on the gray button to create the pull-down menu, and select **Delete**. The aperture stop indicator (**AST**) on the surface number button will move to the first surface of the doublet.
- Set the image distance to the paraxial image distance by clicking on the gray button in the cell for the thickness of surface number 3 (the back focal distance). Select **Solve** (S) > Axial ray height, and after Enter solve value type 0. The thickness value becomes 118.249113. An S will appear on the gray button next to this, indicating the presence of a paraxial "solve." What this means is that as long as the lens is rotationally symmetrical, and paraxial rays are valid (that is, rays which are traced using linear formulae, corresponding to light close to the optical axis), then the distance to the next surface (in this case the image surface) will be adjusted so that the height of the paraxial marginal ray at the next surface is zero in other words, the image will always be at the paraxial focus.
- In the text window, click on **SIv** to confirm this definition.
- *SOLVES
 3 PY --
- Save the lens in the private/len/User_guide directory with the name bino_obj.len
- In the text window, click on **Len** to list the lens.

*LENS								
Object	tive							
SRF	RADIUS	THICKNESS		APERTURE RAI	DIUS	GLASS	SPE	NOTE
OBJ		1.0000e+20		5.2408e+18		AIR		
AST	87.780000 F	9.200000	F	19.050000	AF	BAFN10	F *	
2	-52.752000 F	3.200000	F	19.050000	F	SF10	F	
3	-484.254000 F	118.249113	S	19.050000	F	AIR		
IMS				6.552484	S			

• Check the lens prescription against the manufacturer's published catalog.

Lens: Objective and eyepiece

0.000000

RADIUS

-52.752000 F

-484.254000 F

AST 87.780000 F

SRF

OBI

Ent beam radius 15.000000 Field angle

Combining the objective and the eyepiece

The first task is to combine objective and eyepiece without the prisms.

- Ensure the file with the objective, **bino_obj** is open.
- Open the surface data spreadsheet.
- If necessary, click on **Draw Off** to open the Autodraw window.
- Change the title to Objective and eyepiece
- Left click on the surface button for the image surface (IMS). This will select surface 4, indicated by a bold surround.
- Right click on the gray button **IMS**, under **SRF**, to bring up the options menu.
- Objective and eyepiece FOCAL LENGTH = 1677 NA = 0.008944 DES: OSLO 18.6

3.000000 Primary wavln

GLASS

BAEN10

ATR

SF10 F

ATR

APERTURE RADIUS

19.050000 AF

19.050000 F

5.2408e+18

19.050000

UNITS: MM

0.587560

- **Choose Insert Lens File**
- In the Merge lens file window, find the eyepiece file bino_ep and click on Open.

At this stage, of course, the eyepiece is now the wrong way round.

Select the seven surfaces of the eyepiece and the exit pupil (numbered 4 to **IMS**)

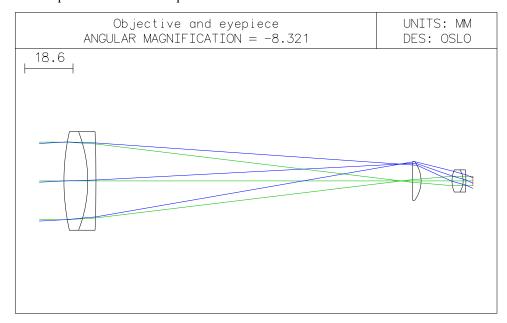
0.000000 2.734194 1.050164 AIR 82.025813 1.072233 4.288931 F4 7.988135 4.288931 4.288931 BAK2 C -10.668717 11.955396 4.288931 AIR 12.598736 3.216699 7.505630 BAK2 C 0.000000 4.133458 7.505630 AIR 0.000000 2.616880

THICKNESS

1.0000e+20

9.200000 F

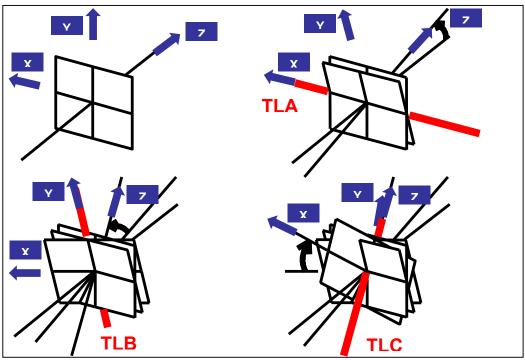
3.200000 F


118.249113 5

- Right click anywhere in this group.
- Select Reverse

- Click on **Gen** at the top of the surface data spreadsheet, and change **Evaluation mode** to **Afocal**. This means that ray aberrations will be angular rather than transverse linear.
- Change the exit pupil (surface 10) aperture radius to 15/8
- Click on surface 10 Special gray button. Select Surface Note (N) and change the note to Exit pupil. Also under the surface 10 Special button, select Surface control(F) > General Change Surface appearance in lens drawing: to Drawn, and change the Pen number to 4 (i.e. red).
- Save the file with the name **bino_obj_ep.len**
- Click on **Len** in the text window header.

*LENS	DATA									
Object	tive and eyer	piece								
SRF	RADIUS	THICKNESS		APERTURE RAI	DIUS	GLASS	S	PΕ	NOTE	
OBJ		1.0000e+20		5.2408e+18		AIR				
AST	87.780000	F 9.200000	F	19.050000	AF	BAFN10	F	*		
2	-52.752000	F 3.200000	F	19.050000	F	SF10	F			
3	-484.254000	F 118.249113	S	19.050000	F	AIR				
4		4.133458		2.616880		AIR				
5		3.216699		7.505630		BAK2	C			
6	-12.598736	11.955396		7.505630		AIR				
7	10.668717	4.288931		4.288931		BAK2	С			
8	-7.988135	1.072233		4.288931		F4	C			
9	-82.025813	2.734194		4.288931		AIR				
IMS				1.875000				*]	Exit Pu	pil


• Open the surface data spreadsheet and find the Autodraw window.

Surface decenters and tilts

Before modeling the prisms, we will look at how tilted and decentered surfaces are defined.

Chapter 4

The gray button under **Special** in the surface data spreadsheet includes the option **Coordinates** where all this is found.

The default sequence is **Decenter, then tilt** in which case the sequence of displacements is:

- 1. Decenter by DCX along X axis, by DCY along Y axis, and by DCZ along Z axis, all in system units.
- 2. Tilt anticlockwise about the new X axis through an angle TLA (degrees)
- 3. Tilt anticlockwise about the new Y axis through an angle TLB (degrees)
- 4. Tilt clockwise about the new Z axis through an angle TLC (degrees).

The tilts are shown in the diagram above. If the **Tilt, then decenter** option is chosen, the order is reversed.

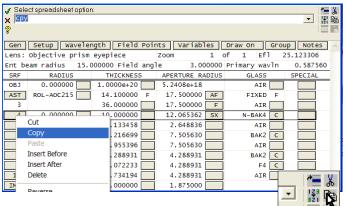
The effect of decentering or tilting a surface is also to decenter or tilt not only the surface and its local coordinate axes, but also all the subsequent surfaces in the system.

To tilt only a component or group of surfaces, on the first surface apply the tilt and select the option Use base coordinate system for coordinate returns to this surface: YES. On the last surface, select Coordinate return: YES and Return to surface: [first surface number].

To tilt a single surface, apply the tilt, then select Coordinate return: YES, Return to surface: [default value, the same surface number] and Use base coordinate system for coordinate returns to this surface: YES.

Adding a right angle prism

The task is to model a simple 90° prism. The measurement of the external dimensions of the binoculars, allowing 3 mm for the case, suggests that the apex of the first prism (20 mm deep) will be 70 mm behind the front surface of the objective (thickness 12.4 mm), leaving an air space of 70 - 12.4 - 20 = 37.6 mm between the rear of the objective and the prism.


- Open the surface data spreadsheet.
- Change the lens title to Objective prism eyepiece
- Change the thickness for surface 3 to **37.6**. The solve flag (S) disappears.
- Now add an extra surface before surface 4: Left click on the gray surface button for surface 4, and then either right click on the same button and select **Insert before**, or use the shortcut **Shift-space**.

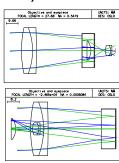
Users of OSLO EDU will not be able to add the extra surface to the straight-through binocular, since it will cause the surface count limit (10) to be exceeded. However, starting with the file consisting of the objective alone (bino_obj) the exercise of adding the first prism can proceed as described here.

- Change the thickness for the new surface 4 to **10** mm.
- Under the gray button in the column labeled Aperture Radius for this surface (surface 4), select Special Aperture Data (X). Leave the Ap Id: as 0. Change the shape to Rectangle, keep the Action as Transmit, leave the Group: as 0, and set the semi-aperture dimensions to:

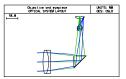
$$Xmin = -10 Xmax = 10 Ymin = -10 Ymax = 10 Angle = 0.0$$

Change the medium for surface 4 from air to glass: Click on the gray GLASS button, select Catalog > Schott > N-BAK4. (For some versions of OSLO the current Schott catalog will be in the directory be Schott 2004 rather than Schott).

- Select the entire row of surface 4. Then right click, selecting Copy. Otherwise right click on the copy icon on the right of the spreadsheet, shown in the diagram.
- Click on the gray surface button for surface 5. Right click and select
 Paste. Otherwise right click the paste icon. The new surface is added before the one highlighted.


- Once more, click on the gray surface button for surface 5, right click and select Paste.
- Change the **Thickness** for surface 5 to **-10**.

 Under the Aperture Radius gray button for surface 5, select Special Aperture Data and set:


$$Ymin = -14.14 \quad Ymax = 14.14$$

leaving everything else in this dialog box unchanged.

- From the gray button under **Glass** for surface 5, select **Reflect (hatch)**.
- Under **Glass** for surface 6, type **AIR**
- To change the thickness for surface 6 to an axial ray height solve, click on the gray button next to thickness for surface 6, and select Solve (S) > Axial ray height, and after Enter solve value type 0.
 - Under Special for surface 5, select Coordinates (C). Set TLA = -45, and Tilt and Bend: Yes. Leave everything else as default.

In most cases, tilting a surface rotates the coordinate system of the airspace after that surface, and all subsequent surfaces, through the same angle. However if **Tilt and Bend** is specified, the rotation is through twice this angle, corresponding to the law of reflection.

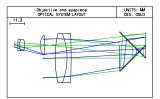
• In the text window, click on **Ape** to list the special aperture data for the three surfaces of the prism.

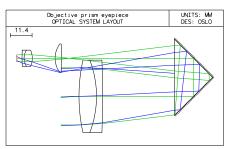
```
*APERTURES
SRF
      TYPE APERTURE RADIUS
       CMP
              12.022663
    Special Aperture Group 0:
      ATP
              Rectangle AAC
                                 Transmit AAN
       AX1
             -10.000000 AX2
                                10.000000 AY1
                                                 -10.000000 AY2
                                                                    10.00000
              11.590322
 5
       CMP
    Special Aperture Group 0:
       ATP
              Rectangle AAC
                                 Transmit
                                          AAN
                                                 -14.140000 AY2
                                                                   14.140000
       AX1
             -10.000000 AX2
                                10.000000 AY1
       CMP
              11.157981
    Special Aperture Group 0:
             Rectangle AAC
                                 Transmit AAN
      ATP
       AX1
             -10.000000 AX2
                                10.000000 AY1
                                                 -10.000000 AY2
                                                                   10,000000
```

• Click on **Len** to list the lens data. Note that the three solved aperture radius values seen on the top-level spreadsheet for surfaces 4, 5 and 6 remain unchanged by the definition of special apertures (X); these values are ignored.

*LENS	DATA											
Object	Objective prism eyepiece											
SRF	RADIUS	THICKNESS		APERTURE RAD	ius	GLASS	5	SPE	NOTE			
OBJ		1.0000e+20		5.2408e+18		AIR						
AST	87.780000	F 9.200000	F	19.050000	AF	BAFN10	F	*				
2	-52.752000	F 3.200000	F	19.050000	F	SF10	F					
3	-484.254000	F 37.600000		19.050000	F	AIR						
4		10.000000		12.022663	sx	N-BAK4	С					
5		-10.000000		11.590322	SX	REFL_HATCH		*				
6		-67.900739	S	11.157981	sx	AIR						
7		4.133458		2.616880		AIR						
8		3.216699		7.505630		BAK2	С					
9	-12.598736	11.955396		7.505630		AIR						
10	10.668717	4.288931		4.288931		BAK2	С					
11	-7.988135	1.072233		4.288931		F4	C					
12	-82.025813	2.734194		4.288931		AIR						
IMS				1.875000				*	Exit Pupil	L		

• Click on **Spe** to list the surface notes, the coordinate (tilt) data and the surface tag (pen color etc.) data:

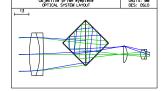

```
*SURFACE NOTES
13
      Exit pupil
*TILT/DECENTER DATA
 5
       DT
             1
                       DCX
                                           DCY
                                                              DCZ
       BEN
                       TLA
                              -45.000000
*SURFACE TAG DATA
       LMO ELE (3 surfaces)
 1
13
       DRW ON
       LDP
```


The eyepiece is incorrectly modeled since the signs of all curvatures and thicknesses should be inverted. For the time being, however, we will ignore this and proceed to the next stage.

Converting the prism to a Porro prism

The Porro prism has two reflecting surfaces at right angles to each other.

- Select the entire row of surface 5. Then right click, selecting **Copy**.
- Click on the gray surface button for surface 5. Right click and select **Paste**.
- Using the surface data spreadsheet, change the thickness for surface 5 to -20 mm, and the thickness for surface 6 to 10 mm.
- Save with the name bino_porro.len.
- In the text window click on **Len** and **Spe**.

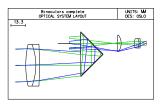


*LENS	DATA						
Objec	tive prism eye	piece					
SRF	RADIUS	THICKNESS	APERTUR	E RADIUS	GLASS	SPE	NOTE
OBJ		1.0000e+20	5.2408	Be+18	AIR		
AST	87.780000 F	9.200000	F 19.05	0000 AF	BAFN10	* म	
2	-52.752000 F			0000 F	SF10		
3	-484.254000 F			0000 F	AIR		
4		10.000000	12.02	2663 SX	N-BAK4	С	
5		-20.000000		0322 SX	REFL HATCH		
6		10.000000		5639 SX	_		
7		55.152366	s 10.29	3298 SX	AIR		
8		4.133458	2.61	.6880	AIR		
9		3.216699	7.50	5630	BAK2	С	
10	-12.598736	11.955396		5630	AIR	-	
11	10.668717	4.288931	4.28	8931	BAK2	С	
12	-7.988135	1.072233	4.28	8931	F4	C	
13	-82.025813	2.734194	4.28	8931	AIR		
IMS			1.87	5000		*	Exit Pupil
*SURF	ACE NOTES						
14	Exit Pupil						
*TILT	DECENTER DATA						
5	DT 1	DCX		DCY		DCZ	
	BEN	TLA -	45.000000	TLB		TLC	
6	DT 1	DCX		DCY		DCZ	
	BEN	TLA -	45.000000	TLB		TLC	
*SURF	ACE TAG DATA						
1	LMO ELE (3	surfaces)					
14	DRW ON						
	LDP 4						

Adding a second Porro prism

We will now add the second Porro prism. Note that users of OSLO EDU will have reached the 10-surface limit even without the eyepiece, and will have to delete the objective (surfaces 1 to 3) to complete this section, modifying the surface numbering accordingly.

- In the surface data spreadsheet, select surfaces 4-7.
- Right click, selecting **Copy**.
- Click on surface 8 to highlight the whole surface, rightclick, and select **Paste**.
- Under Thickness for surface 7, enter 0. This automatically deletes the thickness solve on that surface.



- The aperture of surface 12 is not sufficiently large. Convert it to a solved aperture by just setting the **Aperture Radius** for surface 8 to 0. The solved value (6.552484) replaces it immediately.
- Surface 18 is not at the true exit pupil. Click on the gray button under **Thickness** for surface 17, and select **Solves (S) > Chief ray height...** and enter **0**.

Completing the design

The model does not include the 90° rotation about the optical axis of the second prism relative to the first.

- To rotate the second prism Z axis through an angle of 90°, under Special for surface 8, select Coordinates (C), and set the tilt angle about the z-axis, TLC = 90 (degrees).
- Change the lens title to: Binoculars complete.
- Save with the file name bino_complete.len
- Enter the commands: drl;drr 0;drr 1 to draw in 2 dimensions.

The full prescription is obtained by clicking on **Len Spe** and **Ape** in the text window.

*LENS	DATA						
Binoc	ulars complete						
SRF	RADIUS	THICKNESS	APERTURE	RADIUS	GLASS	SPE	NOTE
OBJ		1.0000e+20	5.2408e	+18	AIR		
AST	87.780000 F	9.200000 E	19.050	000 AF	BAFN10	F *	
2	-52.752000 F	3.200000 E	19.050	000 F	SF10	F	
3	-484.254000 F	37.600000	19.050	000 F	AIR		
4		10.000000	12.022	2663 SX	N-BAK4		
5		-20.000000	11.590	322 SX	REFL_HATCH		
6		10.000000	10.725	639 SX	REFL_HATCH	*	
7			10.293	3298 SX	AIR		
8		10.000000		3298 SX	N-BAK4		
9		-20.000000		957 SX	REFL_HATCH	*	
10		10.000000		274 SX	REFL_HATCH	*	
11		29.655619 8	8.563	933 SX	AIR		
12		4.133458	6.552	2484 S	AIR		
						_	
13		3.216699	7.505		BAK2	С	
14	-12.598736	11.955396	7.505	630	AIR		
						_	
15	10.668717	4.288931	4.288		BAK2		
16	-7.988135	1.072233	4.288		F4	С	
17	-82.025813	5.649290 \$	4.288	3931	AIR		
TMG			1 075				nuit Dunii
IMS			1.875	5000		^ ,	Exit Pupil
* CITDE	ACE NOTES						
18	Exit Pupil						
10	EXIC PUPIL						
*****	/DECENTER DATA						
5	DT 1	DCX		DCY		DCZ	
3	BEN		5.000000	TLB		TLC	
6	DT 1	DCX		DCY		DCZ	
U	BEN		5.000000	TLB		TLC	
8	DT 1	DCX		DCY		DCZ	
	21 1	TLA		TLB		TLC	90.000000
9	DT 1	DCX		DCY		DCZ	
,	BEN		5.000000	TLB		TLC	
10	DT 1	DCX		DCY		DCZ	
	BEN		5.000000	TLB		TLC	
	BEN	TLA -45	.000000	TLB		TLC	

Chapter 4

```
*SURFACE TAG DATA
 1
      LMO ELE (3 surfaces)
18
       DRW ON
       LDP
*APERTURES
SRF TYPE APERTURE RADIUS
       SPC 5.2408e+18
      FIX
            19.050000
 1
            19.050000
19.050000
 2
      FIX
 3
      FIX
      CMP 12.022663
    Special Aperture Group 0:
    0 ATP Rectangle AAC AX1 -10.000000 AX2
                             Transmit AAN --
10.000000 AY1 -10.000000 AY2 10.000000
    CMP
            11.590322
    Special Aperture Group 0:
    0 ATP
            Rectangle AAC
                               Transmit AAN
       AX1 -10.000000 AX2 10.000000 AY1
                                               -14.142136 AY2
                                                                14.142136
      CMP
            10.725639
    Special Aperture Group 0:
    0 ATP Rectangle AAC
                               Transmit AAN
       AX1
            -10.000000 AX2
                              10.000000 AY1
                                               -14.142136 AY2
                                                               14.142136
 7
    CMP 10.293298
    Special Aperture Group 0:
                             Transmit AAN
10.000000 AY1
           Rectangle AAC -10.000000 AX2
    0 ATP
                                               -10.000000 AY2
                                                                 10,000000
       AX1
      CMP
            10.293298
    Special Aperture Group 0:
                                Transmit AAN
    0 ATP Rectangle AAC
            -10.000000 AX2
                              10.000000 AY1 -10.000000 AY2
                                                               10.000000
       AX1
    CMP 9.860957
    Special Aperture Group 0:
    0 ATP Rectangle AAC AX1 -10.000000 AX2
                             Transmit AAN --
10.000000 AY1 -14.142136 AY2
                                                                14.142136
10
      CMP
              8.996274
    Special Aperture Group 0:
    0 ATP
            Rectangle AAC
                               Transmit AAN
      AX1 -10.000000 AX2 10.000000 AY1 -14.142136 AY2
                                                               14.142136
11
      CMP
            8.563933
    Special Aperture Group 0:
                                Transmit AAN
    0 ATP Rectangle AAC
                              10.000000 AY1 -10.000000 AY2
       AX1
            -10.000000 AX2
                                                                 10.000000
12
      CMP
              6.552484
13
       SPC
              7.505630
14
       SPC
              7.505630
15
       SPC
              4.288931
16
       SPC
              4.288931
17
       SPC
             4.288931
18
       SPC
              1.875000
```

Chapter 5 - Graphical analysis

Introduction

In general, the graphics facilities in OSLO are of the most frequently generated using the icons in the toolbars of the individual graphic windows. Some facilities, however, can only be accessed from the menu headers, and some only by calling up CCL commands from the command line.

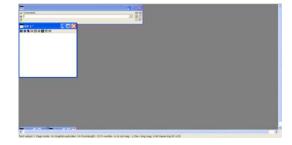
A comprehensive catalog of the graphics facilities will be found in the Graphics Reference in the appendix at the end, together with instructions as to how each may be accessed. In this chapter only lens drawing and ray intercept coordinate reports will be discussed in detail.

Opening a new graphics window

This exercise shows how a new graphics window can be opened in the top left corner of the main window, just under the command window.

- From the main window select the **Window** menu header.
- Choose Graphics > Open and type the following responses into the command window:

Enter graphics window


number: 0

Enter window width: 320

End to window height: 300

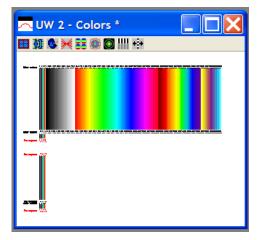
Enter window x: 0

Enter window y: 120

Note that the new window has a dark blue title bar, containing the letters GW 2 *. GW means that it is a graphics window with no updateable content. The * symbol means that it is the current window for graphical output. The coordinate system defines x = 0, y = 0 as the top left corner, and the command window covers the area x = 0 to 600, y = 0 to 100. The point x = 960 (1420 for wide screens), y = 710 is the bottom right position which can be seen without scrolling.

Labeling a graphics window

- From the main window select the **Window** menu header.
- Choose Graphics > Title... and type the following response into the command window:
- Enter window title: Colors.

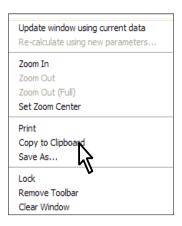

The title appears in the blue bar at the top of the window. In practice graphics windows are titled automatically by the graphics command associated with the relevant icon in the graphics window.

Generating a plot

- Select the **Tools** menu header.
- Choose Plotting toolkit > Colors and Pens.

This executes the CCL command **colors**, which is stored in the file **graph_tools.ccl** in the **public/ccl** directory. It shows the pen numbering used in graphics plots.

Notice that the letters in the title bar have now changed to **UW**, meaning that the graphics window is updateable.


Saving a plot

- Right click on the window and choose **Save As** ...
- Save the file in any format. The size of the file stored will differ according to the format chosen. For comparison, the file sizes for the Colors and Pens graphic are shown:

Windows bitmap	BMP	164 kB
Compressed bitmap	RLE	29 kB
HP-GL format	HGL	29 kB
Windows metafile	WMF	118 kB
Placeable Windows metafile	WMF	118 kB
Enhanced Windows metafile	EMF	182 kB

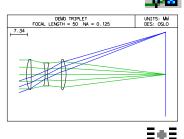
Cutting and pasting a plot

- Right click on the window and choose Copy to Clipboard.
- Open a Word document or PowerPoint presentation, right click, and choose Paste.
- If there are problems with the size of the image pasted into the new application, look again at the Graphics Preferences in Chapter 2.

Lens drawing

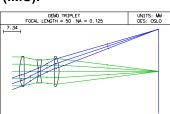
Drawing a lens in 2D

This exercise will demonstrate some of the 2D drawing options, using the standard triplet lens as an example.


- Click on the Open Lens icon in the main window toolbar.
- Open the file in the **Private** directory, **trip.len**
- In the graphics window, click on the **Setup Window/Toolbar** icon.

- Select the Lens Drawing toolbar.
- Click on the **Draw system (2D)** icon.

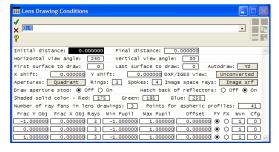
This gives a lens drawing including rays as the default. The corresponding icon in the Standard Tools toolbar gives the option of a 2D (plan) drawing without rays.


Various options to enhance this drawing will now be shown.

- Click, in the main window toolbar on the icon shown here for **Edit Lens Drawing Conditions**.
- On the fifth line, against Image space rays: select Draw rays to image surface. The button then reads Image srf
- From the menu header Select File > Preferences > Preference groups > Graphics... and choose from the menu Use labels on graphics. Select Off.
- Open the surface data spreadsheet.

- Click on the gray button under Special for surface 7 (IMS).
- Select Surface Control (F) > General
- On the second line, against Surface appearance in lens drawings: select Drawn. Set the Pen number for surface in lens drawings as 3 (blue).

- Close both spreadsheets.
- Once again click on the **Draw system (2D)** icon to draw the lens.

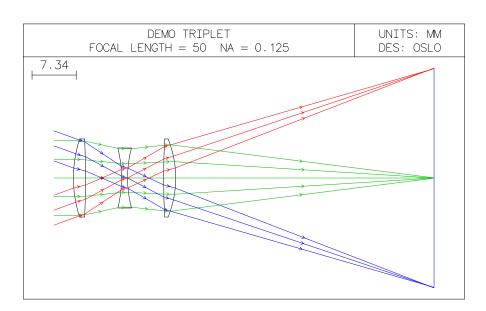


 Click again on the icon in the main window toolbar for Edit Lens Drawing Conditions.

In the ray drawing table at the foot of the spreadsheet, change the three values of the **Frac. Y Obj** (FBY) to 0.0, -1.0, +1.0 respectively. Also change the number of rays in the second fan (**Rays**) from 0 to 3, **Min pupil** to -0.4, and **Max pupil** to 0.4.

In this spreadsheet, for each successive ray fan (where the number of rays plotted is non-zero) the pen colors cycle through the sequence:

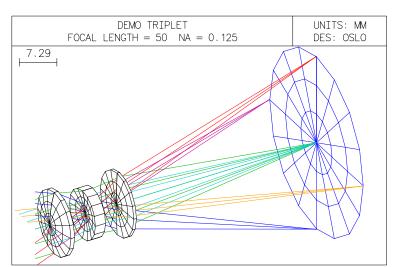
- 1. Green
- 2. Blue
- 3. Red
- 4. Light-Blue
- 5. Orange
- 6. Violet
- 7. Yellow
- 8. Black



- Close the **Edit Lens Drawing Conditions** spreadsheet.
- From the Lens menu header, select Show Operating Conditions .. > Lens Drawing

*CONDITION	S: LENS DRAW	VING									
	distance:				Fi	nal d	listance:				
Horizon	tal view and	ıle:		240	Ve	rtica	al view a	ngle:			30
First s	urface to dr	aw:		0	La	st su	rface to	draw:			0
X shift	of drawing:	:			Y	shift	of draw	ing:			
Drawn a	pertures (so	olid):	Quad	rant	Ιπ	age s	space ray	s:	In	nage	srf
Rings i	n aperture ((solid):		3	Sp	okes	in apert	ure (sol	id):		4
Number	of field poi	ints (ray	s):	3	DX	F/IGE	ES file v	riew:	Unco	onvei	rted
Draw ap	erture stop	location	:	Off	На	tch b	ack side	of refl	ector	s:	On
Red val	ue for shade	ed solid:		175	Gr	een v	alue for	shaded	solid	1:	185
Blue va	lue for shad	ded solid	:	250	Po	ints	for asph	eric pro	file	:	41
Autodra	w Options:	YZ	Pro	file							
Fpt Fra	c Y Obj Frac	X Obj R	ays	Min F	upil	Max	Pupil	Offset	Fan	Wvn	Cfg
1			5	-1.0	0000	1.	.00000		Y	1	0
2 -	1.00000		3	-0.4	0000	0.	40000		Y	1	0
3	1.00000		3	-0.4	0000	0.	40000		Y	1	0

 Draw the lens in two dimensions by clicking on the icon for Draw system (2D).

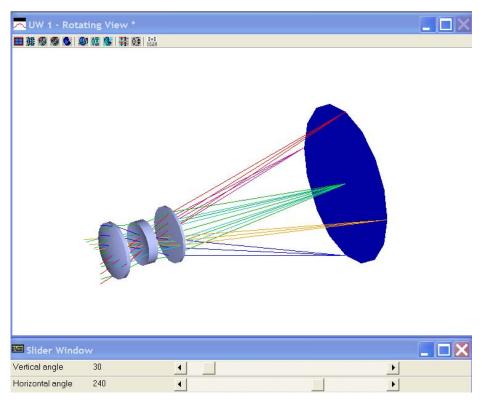


Drawing a lens in 3D

- Open the **Edit Lens Drawing Conditions** spreadsheet again.
- <u>=+=</u>
- On the fifth line, for Apertures: change Quadrant to Full apertures.
 For Number of ray fans in lens drawings enter 6, then scroll down to enter the three new fans with Frac X Obj = 0.0, -1.0, 1.0 respectively.
 For the three fans, specify 5, 3 and 3 rays and for the last two fans, change Min pupil to -0.4, and Max pupil to 0.4.
- Select the radio button for **FX** for the last three fans.
- Close the **Edit Lens Drawing Conditions** spreadsheet.
- To list these values, from the **Lens** menu header, select **Show Operating** Conditions > Lens Drawing.

*CONDITIONS: LENS DRAWING			
Initial distance:		Final distance:	
Horizontal view angle:	240	Vertical view angle:	30
First surface to draw:	0	Last surface to draw:	0
X shift of drawing:		Y shift of drawing:	
Drawn apertures (solid)	: Full	Image space rays:	Image srf
Rings in aperture (soli	id): 3	Spokes in aperture (so	olid): 4
Number of field points	(rays): 6	DXF/IGES file view:	Unconverted
Draw aperture stop loca	ation: Off	Hatch back side of ref	flectors: On
Red value for shaded so	olid: 175	Green value for shaded	d solid: 185
Blue value for shaded s	solid: 250	Points for aspheric pr	rofile: 41
Autodraw Options:	YZ Profile		
Fpt Frac Y Obj Frac X O	Obj Rays Min	Pupil Max Pupil Offset	Fan Wvn Cfg
1	5 -1.	00000 1.00000	Y 1 0
2 -1.00000	3 -0.	40000 0.40000	Y 1 0
3 1.00000	3 -0.	40000 0.40000	Y 1 0
4	5 -1.	00000 1.00000	X 1 0
51.000	000 3 -0.	40000 0.40000	X 1 0
6 1.000	000 3 -0.	40000 0.40000	X 1 0

• Click on the icon for **Draw system (3D solid model).**



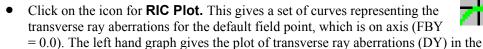
Drawing a lens in 3D with sliders

• Click on the icon for Draw system (3D w/slider)

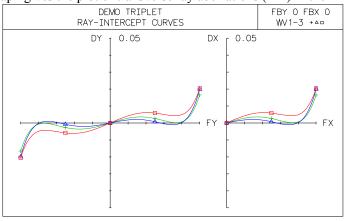
• Select Shaded solid.

- It may be necessary to extend the slider bars to make the slider tracks visible.
- Adjust the sliders according to the following table:

Vertical view angle	Horizontal view angle	Description	Example
30°	240°	Default	
30°	330°	Isometric	
0°	270°	Y - Z (2D plan view)	
90°	270°	X - Z	
0°	360°	X - Y view from image	•


If the lens is saved with a particular 3D view in force, the values of the view angles will be stored with the lens and used in subsequent 3D drawings. The horizontal and vertical view angles may also be set in the **Edit Lens Drawing Conditions** spreadsheet.

Ray intercept curves analysis


The importance of these curves for diagnosis of aberration problems cannot be overstated, so a detailed description will be given here of this analysis. The lens used for the graphs in this section is the objective of the binoculars modeled in chapter 3.

Ray analysis (RIC)

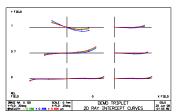
- In the graphics window, click on the **Setup Window/Toolbar** icon.
- Select the **Ray Analysis** toolbar.

meridional section (the Y - Z section) at different heights (FY) in the pupil. The right hand graph gives the same information in the orthogonal plane - that is, DX as a function of FX. The three curves are colored according to the wavelengths, which, in the visible

at least, are representative provided the order in which the wavelengths are defined is middle-short-long corresponding to green-blue-red.

If the system is defined as afocal (see under the **Gen** button in the surface data spreadsheet) the aberrations are angular values DYA and DXA, expressed as direction tangents.

Ray intercept curves for 2D field points


Users of OSLO EDU and OSLO Light should skip this section

• Click on the icon for **RIC vs Field Points**.

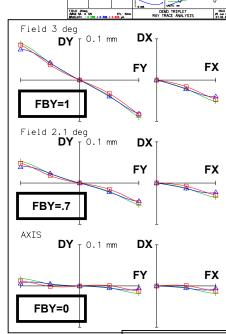
This gives the graphs laid out in two dimensions according to the relative field

coordinates FBX, FBY. In this case, three graphs are given for the three field points defined for this lens, which are (reading from the bottom) FBY = 0.0 (on axis), FBY = 0.7 and FBY = 1.0 (edge of

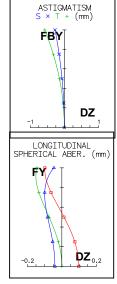
field). The left-hand column gives DY as a function of FY, the right-hand column plots DX against FX.

Ray intercept curves report graphic

 Click on the icon for RIC Report Graphic. This icon also appears on the Standard Tools toolbar. The analysis results are shown as 6 graphs within the same window, plus a 2D lens drawing.



1. The left-hand group (unlabeled) gives the same ray intercept curves for three field points as the ray intercept curves for 2D field points.

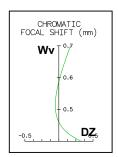

This set of curves gives the relationship between the ray aberrations and their radial position in the pupil. If more than three wavelengths are specified, up to 12 sets of curves will be drawn, with different symbols as well as different colors to distinguish them.

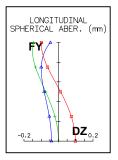
Most of the other information in the report (apart from distortion) can be deduced from these curves.

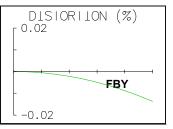
A designer can use these curves as a diagnostic tool to analyze the different types of aberration. This analysis is important, since different aberrations require different measures for their correction. However these graphs do have limitations. For example, they do not indicate the aberrations of rays in the four quadrants between the two orthogonal planes.

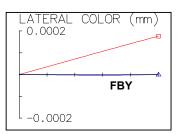
- 2. The astigmatism curves give the variation of paraxial focus across the field for the meridional section (the Y-Z section, labeled T) and the sagittal section (the X-Z section, labeled S). Results are only shown for the mean wavelength. This curve can be plotted as a stand-alone, either monochromatically or in 3 colors, using the menu header:
 - Evaluate > Ray fans > Single field point ...
 - At the top, select **Field sags**.
 - Choose either Monochromatic or Polychromatic.
 - Click on OK.
- 3. The three curves for longitudinal spherical aberration give the movement of the focal point along the axis for different radii in the pupil, for the axial image point only, corresponding to the three wavelengths.

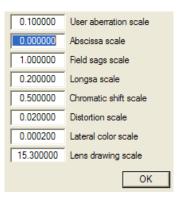
The curves for chromatic focal shift represent the axial beam paraxial longitudinal focal variation with wavelength over the range 0.4 to 0.7 μm - or over a different range if other wavelengths are specified. Alternatively, for OSLO Standard and OSLO Premium users, this curve can be plotted as a standalone, in slightly different format, using the menu header:


- Evaluate > Ray fans > Other ray analysis ...
- From the menu select **Chromatic focal shift...**
- Enter a wavelength range (or zeros for default).
- Click on OK.
- 4. Longitudinal spherical aberration curves indicate the errors in focus DZ of the axial beam as a function of the pupil height DY. Curves are given for the three specified wavelengths. The graph is plotted on its own via the menu header:
 - Evaluate > Ray fans > Single field point ...
 - At the top, choose Longitudinal spherical...
 - Click on OK.
- 5. The curve for distortion shows the departure from the paraxial magnification as a function of field height. The distortion graph can be plotted alone in a different format using the menu header:
 - Evaluate > Ray fans > Single field point
 - At the top, choose **Distortion**
 - Choose either Monochromatic or Polychromatic.
 - Insert a value for the aberration scale (in %).
 - Click on OK.

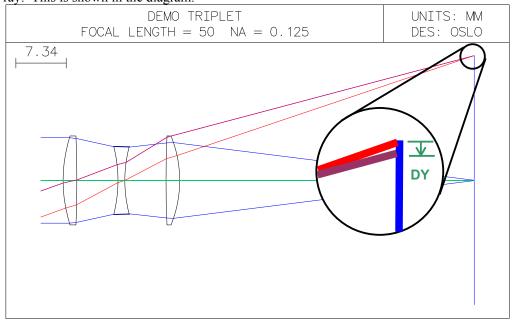

The plots obtained from OSLO EDU and OSLO Light are different from the one shown here.


6. The curve for lateral color shows the difference between the heights of the red and green rays, and between the blue and green rays, as a function of field height. The graph is not available as a standalone.


To control all the aberration scales, the RIC report graphic command may be called from the main menu header.


- From the **Evaluate** menu header select **Other** ray analysis>Report Graphic..:
- Fill in the spreadsheet with the required values. The value of the abscissa scale is omitted as it only applies to graphs where curves are plotted against h-tan U rather than DY.
- Click on OK.

Chapter 6 - Numerical analysis


Introduction

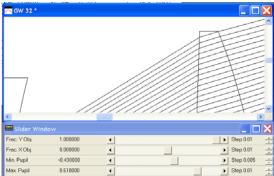
This chapter deals with the text window and the spreadsheet buffer which lies under it. In order to illustrate the methods of numerical analysis, a simple task concerning the demonstration triplet lens supplied with the program will be carried out:

For the triplet lens supplied with the program, calculate the transverse ray aberration of the outermost ray transmitted at the edge of the third component at the edge of the field, at the central (green) wavelength.

Also estimate the transmittance at the extreme field, as a percentage of the axial transmittance.

The transverse ray aberration of an off-axis ray in the meridional section is the distance from the point where this ray intersects the image plane, to the intersection point of the pupil ray. This is shown in the diagram.

Before we can begin the task we need to locate the edge ray concerned in terms of its relative pupil height coordinate FY.


Finding the edge rays

- Open the lens in the private directory **trip.len**. Alternatively it will be found in the public directory as **/public/demo/LT/demotrip.len**.
- In the text window, click on **Ape** to list the apertures. The indication **CHK** for surfaces 1 and 6 means that in the ray analysis which follows the rays which lie outside these checked apertures will be obstructed. (Checked clear apertures are indicated by a **K** in the **Clear Aperture Radii** column of the surface data spreadsheet).

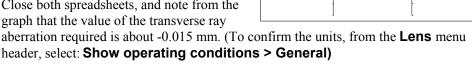
*APERTURES						
SRF	TYPE	APERTURE RADIUS				
0	SPC	3.6397e+19				
1	SPC	6.500000 CHK				
2	PKP	6.500000				
3	SPC	5.000000				
4	SPC	5.00000				
5	SPC	6.500000				
6	SPC	6.500000 CHK				
7	CMP	18.170326				

- In the graphics window, click on the Setup Window/Toolbar icon, and select the **Lens Drawing** menu.
- Click on the icon for **View Ray** Fans (2D) - Interactive.
- To define the point in the field as the edge of the field, set the slider-wheel for Frac Y Obj to 1.0, and leave the slider-wheel for **Frac X Obj** at **0.0**.

0.1

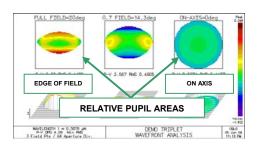
DY at WV 1 for ray at FY =

- Adjust the slider-wheels for **Min pupil** and **Max pupil** until the extreme rays of the bundle just pass through the first and last surfaces respectively.
- Note the values of the fractional pupil height for these edge rays: -0.43 and+0.61. The latter is the value of FY needed for this problem.


Instead of this procedure, users of OSLO Standard and OSLO Premium may use a quicker method for carrying out vignetting analysis:

- From the Optimize menu header, select: Support routines>Vignetting > Vignetting analysis.
- Check Copy vignetting data to field point set? No
- Leave the Maximum pupil position to test at 5.0
- Click on **OK**.

*VIGN	TETTING	FACTORS				
FPT	CFG	FBY	FBX	FY1	FY2	FXMAX
1	0			-1.040001	1.040001	1.040001
2	0	0.700000		-0.637293	0.810585	0.990811
3	0	1.000000		-0.431105	0.612924	0.901827


Graphical estimates

- From the **Evaluate** menu header select: **Ray fans > Single field point** ... and, leaving all the default values DEMO TRIPLET RAY-INTERCEPT CURVES
 - unchanged, click on **Set object point** at the foot of the spreadsheet.
- In the Set object point spreadsheet, set Fractional coordinates of object point to FBY = 1.00 FBX = 0.00 FBZ = 0.00.
- Close both spreadsheets, and note from the graph that the value of the transverse ray

• Click on the **Plot report graphics** wavefront analysis icon on the standard toolbar to get the pupil maps, and note that the area of the edge-of-field map is about 50% of the area of the on-axis map.

So we can conclude that the transverse ray aberration of the edge ray is about DY = -0.015 mm; the transmission at this field point is about 50%.

Numerical calculation

From the text window

- In the text window, trace the pupil ray (the ray through the centre of the aperture stop) from the edge of the object, by clicking on **Chf.**
- Then to trace a fan of rays in the meridional (Y) section, click on Fan. Set the Minimum coordinate to be -0.43, the Maximum coordinate to be 0.61, and Number of rays to be 2, and leave all other options as default values.
- Note the value of DY (transverse ray aberration in lens units) for the edge ray transmitted:

```
*TRACE FAN - FBY 1.00, FBX 0.00, FBZ 0.00

RAY FY FRAC RFS DYA DXA DY DX

1 0.610000 0.530358 -0.071477 -- -0.013268 --
2 -0.430000 -0.353777 0.052849 -- 0.055365 --
```

- Click on **Spd** in the text window.
- Note the value of the per cent weighted ray transmission:

```
*SPOT DIAGRAM - FBY 1.00, FBX 0.00, FBZ 0.00 - POLYCHROMATIC
APDIV
        17.030000
WAV WEIGHTS:
                  WW2
                              ww3
   1.000000
               1.000000
                           1.000000
NUMBER OF RAYS TRACED:
      WV1
                  WV2
                              WV3
      104
                  104
                              104
```

PER CENT WEIGHTED RAY TRANSMISSION: 44.827586

```
GEO RMS Y
              GEO RMS X
                         GEO RMS R DIFFR LIMIT
                                                    CENTY
                                                               CENTX
   0.021401
             0.007555
                          0.022696
                                      0.003426
                                                 -0.002879
*WAVEFRONT RS
WAVELENGTH 1
  PKVAT, OPD
               RMS OPD STREHL RATIO
                                        RSY
                                                    RSX
                                                               RS7
                        0.091087 -0.004210
               0.485250
   2.224692
```

The conclusion then is that the transverse ray aberration of the edge ray is:

```
DY = -0.013268 \text{ mm},
```

and the transmission at this field point is:

44.8%

*SPOT SIZES

of the on-axis value, excluding the transmittances of optical materials and coatings.

From the menu headers

• From the **Evaluate** menu header select: **Ray fans > Single field point** ... and choose the **Command: Print Y ray-fan**.

- Set Minimum fractional y-component of pupil coordinate (FY) = -.43,
 and Maximum fractional y-component of pupil coordinate (FY) = +.61.
 Set the Number of rays in fan to the minimum value of 3.
- Leaving all the other default values unchanged, do not close the dialog box, but click on Set object point at the foot of the spreadsheet.
- In the Set object point spreadsheet, leave the specification as Direct entry Set
 Fractional coordinates of object point to FBY = 1.00 FBX = 0.00 FBZ = 0.00.
- Close the Set object point spreadsheet with the green tick, and click on OK in the Trace fans of rays through lens dialog box:

```
*TRACE FAN - FBY 1.00, FBX 0.00, FBZ 0.00
                   FRAC RFS
                                DYA
                                            DXA
RAY
        FY
                                                            DY
                                                                         DX
                                                                                      DZ
                  0.530358
                               -0.071477
                                                         <u>-0.01</u>3268
       0.610000
  1
                                               --
                                                                         --
                                                                                      --
      0.090000 0.075914 -0.010854
-0.430000 -0.353777 0.052849
 2
                                                         -0.009257
                                                         0.055365
```

- From the **Evaluate** menu header select: **Spot diagram > Single spot diagram...**
- Select Spot diagram Data and click on OK (the earlier Set Object Point command is still valid).

```
*SPOT DIAGRAM - FBY 1.00, FBX 0.00, FBZ 0.00 - POLYCHROMATIC
APDIV
       17.030000
WAV WEIGHTS:
      WW1
                 WW2
                            WW3
   1.000000 1.000000
                        1.000000
NUMBER OF RAYS TRACED:
     WV1
                WV2
 104.000000 104.000000 104.000000
                                     44.827586
PER CENT WEIGHTED RAY TRANSMISSION:
SPOT DIAGRAM SYMMETRY:
                         1.000000
```

From the command line (abbreviated)

In the command line, type the following:
 sop 1 0 0;trf y 2 -.43 .61;spd 200
 and click on the green tick, or press Enter on the keyboard.

••			itaiiioiioai a			Gilaptoi G
*SET	OBJECT PO	INT				
	FBY	FBX	FBZ			
	1.00000	0				
	FYRF	FXRF	FY	FX		
	YC	XC	YFS	XFS	OPL	REF SPH RAD
			-0.911383		65.421390	61.550663
			X 0.00, FBZ	0.00		
		FRAC RF		DXA		
			8 -0.071477			
2	-0.43000	0 -0.35377	7 0.052849		0.055365	
WAV NUM	1.000000 BER OF RAY WV1 13820	WW2 1.000000 S TRACED: WV2 13712	1.000000 wv3	<u>43.909889</u>		
	T SIZES					
			GEO RMS R DI			
	0.020881	0.006382	0.021835	0.003276 -	0.003196	
WAV	EFRONT RS ELENGTH 1	RMS OPD	STREHL RATIO	RSY	RSX	RS7.
			0.060859 -			
			0.000039 -			

The new value for the transmission (43.9%) is more accurate than the earlier result since a finer grid of rays (200 rings, not 17.03, in the pupil) was defined by the **spd** command.

By executing in the Edit window

- From the **Window** menu header select: **Editor > Open** or click the icon.
- Use the history button to call up the last line executed: sop 1 0 0; trf y 2 -.43 .61; spd 200
- Copy and paste it into the Text editor window.
- Highlight it with the cursor (or press **Ctrl-A**), and press **Ctrl-E**. Results are the same.

From the command line (in full)

In the command line, one might perhaps type the following:
 set_object_point(1.0,0.0,0.0,0.0,0.0,0.0,1)
 trace_fan(y,2,-0.43,0.61)
 spot_diagram(chr,none,200)

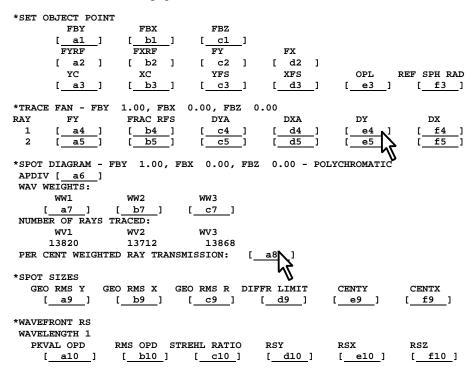
These forms of the commands are used to make programs self-documenting. The short forms are more useful for command line entry.

The spreadsheet buffer

The spreadsheet buffer is an array of numerical storage cells, with 1999 rows numbered as in Microsoft Excel, which underlies each text window. The spreadsheet buffer is used for conveying the results of numerical OSLO calculations to variables in CCL commands, so it is important to understand how it works.

Clearing the text window and spreadsheet buffer

There are three ways to do this:


- EITHER right click anywhere in the text window and select Clear window and SS buffer
- OR, from the <u>Window</u> menu header, select: Text > Reset.
- OR, in the command line, Enter twr (or textwin_reset)

To clear the spreadsheet buffer *without* affecting the printed output in the text window:

• In the command line, enter **sbr** (or **ssbuf_reset**)

Reading from the spreadsheet buffer

- In the text editor window, change the first entry so the whole line looks like this:
 sbr;sop 1 0 0;trf y 2 -.43 .61;spd 200
- Highlight the line with the cursor, and press **Ctrl-E**.
- Watching the message area under the command line, click on the text window output to confirm the following spreadsheet cell allocations:

Note that integers and headers are not included in the spreadsheet buffer.

 Click on the two numerical results indicated, and note the cell coordinates and values given in the message area as follows:

```
e4 = -0.0132683238458
a8 = 43.909889270714
```

Note also that these results are full precision (to 14 digits).

Writing to the spreadsheet buffer

• In the text editor window, add the command for formatted printing: aprintf("DY = % 6.6f Trans = %4.1f %%\n",e4,a8) giving the following output: DY = -0.013268 Trans = 43.9 %

Note that the contents of cells of the spreadsheet buffer can also be accessed using the real array **ssb(row, column)**. For example, **e4** becomes **ssb(4,5)** and **a8** becomes **ssb(8,1)**.

The command **aprintf** places the two values in the spreadsheet buffer, still at full precision, even though they are printed with fewer places (6 and 1 respectively) after the decimal point. Note in particular that the cells are filled even if printing is turned off.

• Click on these results to confirm this:

a11 = -0.0132683238458 b11 = 43.909889270714

Scrolling the spreadsheet buffer

This section should be omitted at the first reading, as it describes a feature used only in advanced programming.

Type in the command line: sbrow and press Enter

Result = 12

This is the row number of the next row to be written to in the spreadsheet buffer. The command **sbr** (**ssbuf_reset**) remaps the spreadsheet row whose number is the first argument, with the row number of the second argument. So to renumber the lines so that any new output is written to row 1 rather than row 12:

- In the text editor window, change the first entry so the whole line looks like this: sbr 12 1;sop 1 0 0;trf y 2 -.43 .61;spd 200
- Highlight it with the cursor, and press **Ctrl-E**.

Note that the row numbers are the same as before, but this time the rows which had been

previously written are preserved, and numbered up to 1999.

We can restore the line numbering by using the **sbr** command with a negative index:

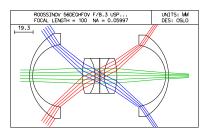
In the command line type:
 sbr -12 0

The effect of this is illustrated in the table. The next row to be written to (in other words, the value of the read-only variable **sbrow**) is marked with an asterisk in each case.

Initial row	a-column	After	After	
numbering	Values	sbr 12 1	sbr -12 0	
1	1.000	1989	1	
2	0.000	1990	2	
3	18.264	1991	3	
4	0.61	1992	4	
5	-0.43	1993	5	
6	200.0	1994	6	
7	1.000	1995	7	
8	43.9	1996	8	
9	.02088	1997	9	
10	2.71	1998	10	
11	-0.013268	1999	11	
12*		1*	12*	
13		2	13	

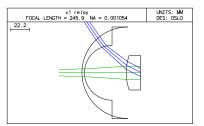
Chapter 7 - Slider-wheel design

1:1 wide angle relay


Introduction

The slider-wheel facility is a powerful tool, which allows the user to control any system variable while watching its effect on any numeric parameter or graphic display. In this chapter there will be an illustration of how slider-wheels alone can be used to complete a design task.

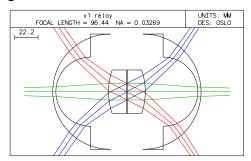
The requirement is for a four-element unity magnification relay. The object has a diagonal of 600 mm. The object to image distance is 451 mm. The distortion must be less than 0.1% and the design criterion is that the lowest value over the field of the modulation transfer function at 1.0 cycles/mm must be greater than 0.4. The wavelengths to be used for the MTF calculation are the usual three (0.58756 μ m, 0.48613 μ m and 0.65627 μ m), weighted equally.


Defining the starting point


Clearly a symmetrical design is called for. In the public lens database (*OSLO Standard and Premium only*) there is an objective lens designed by Roossinov which will be used as the basis for the design of a relay lens. This has the title ROOSSINOV 56DEGHFOV F/8.3 USP2,516,724. It is nearly symmetrical and it has 13 surfaces. The design below has been adapted and simplified from this for use with all versions of OSLO.

Setting up the starting lens

- From the menu select **File>New lens** and choose a custom lens with 5 surfaces.
- In the surface data spreadsheet, change the lens title to **x1 relay**.
- Click on the gray button under **Aperture Radius** for surface 5, and select **Aperture Stop (A)** to move the aperture stop to surface 5.
- Fill in the lens parameters as shown in the diagram below. The values for **Aperture Radius** may be omitted, as these will be adjusted using aperture radius solves that is to say, the aperture will be set at the value equal to the arithmetical sum of the paraxial marginal and pupil ray heights. This is such an extreme field angle lens that the results look unrealistic at first, but this can be corrected later.

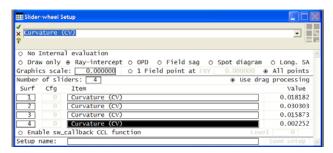

- In the Setup spreadsheet, enter the **Object NA** as **0.03** and the **Object height** as **300** mm. Close the Setup spreadsheet.
- Select surfaces 1 to 4, right click and choose **Copy**.
- Select surface 6 (IMS), right click and select **Paste**
- Select surfaces 6 to 9, right click and choose **Reverse**.
- Change the thickness for surface 5 to 0.5 and for surface 9 to 155.
- In the **Aperture radius** column some are already Solves. Change the remaining apertures (surfaces 6 to 9) to **Solve (S)** by setting them to zero.
- Under **Radius**, click on the gray button for surface 9, choose **Minus curvature pickup**, and on the prompt **Enter pickup source surface**, enter 1. Press **Enter** twice more. Define a similar minus curvature pickup for surface 8 from surface 2, for surface 7 from surface 3 and for surface 6 from surface 4.
- Enter the command ctg to list the lens with curvatures:

x*LENS x1 rela					
SRF	CURVATURE	THICKNESS	APERTURE RADI	IUS GLASS	SPE NOTE
OBJ		155.000000	300.000000	AIR	
1	0.018182	3.000000	55.000000 s	5 F1	С
2	0.030303	50.000000	33.000000 s	S AIR	
3	0.015873	17.000000	20.735891 \$	s sk4	С
4	0.002252	0.500000	8.295530 \$	S AIR	
AST		0.500000	7.775659 2	AS AIR	
6	-0.002252 P	17.000000	8.294476 S	S SK4	С
7	-0.015873 P	50.000000	20.712585 \$	S AIR	
8	-0.030303 P	3.000000	33.000000 8	s F1	С
9	-0.018182 P	155.000000	55.000000 8	S AIR	
IMS			300.541968 8	3	

• Click on **Gen** in the Surface data spreadsheet to open the General conditions spreadsheet.

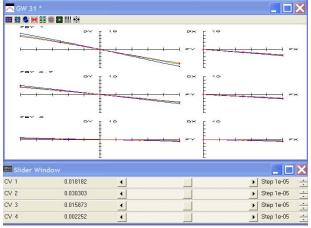
- Under Ray aiming mode, select Wide angle mode.
- Close the General conditions spreadsheet.
- Change the Lens drawing conditions to draw 3 rays for each of the field points FBY = 0, FBY = -1, FBY = +1.

The lens drawing should now appear as shown in the diagram.

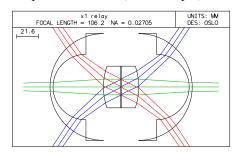


Slider-wheel design with ray intercept curves

 Open the Slider-wheel Setup spreadsheet by clicking on the icon in the main window toolbar.

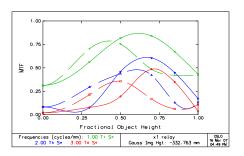


- Select Ray-intercept, All points, Number of sliders = 4, and define sliders on surfaces
 1,2,3,4 for the curvature (cv).
- Close the Slider-wheel Setup spreadsheet.



At this point the four sliders and two graphics windows, GW31 and GW 32 should become visible. If not, try using the Tile command, or open and close the Slider-wheel spreadsheet again.

- The default step size is too large. Click on the lower scroll button at the right-hand end of each slider-wheel to bring the **Step** to **1e-05**.
- Adjust the sliders to improve the performance as far as possible.
- Once the aberrations are too small to discern at the default aberration plotting scale, reopen the Slider-wheel Setup spreadsheet and close it again immediately. The aberrations will be redrawn with a new scale, and the slider-wheels re-centered in their tracks. The step size will still need to be changed, however.
- If a slider reaches the endstop, change the step to re-center it. Note that the graphics zoom feature works on both windows, and the zoom settings are preserved during slider operation.


One possible solution, for example, is

Plotting the MTF across the field

- From the Evaluate menu header select Transfer Function > MTF vs field
- Enter three frequencies in units of cycles per mm: 1.0, 2.0, and 3.0.

This plots the modulation transfer function at all points in the field for the three spatial frequencies. In the example shown here, the upper (green) curve, which shhows the MTF at 1 cycle per mm, still falls well below the desired 0.4 level over part of the field of view.


Editing the slider-wheel callback command

In order to use the slider-wheels to optimize the MTF across the whole field, it will be necessary first to make a small modification to one of the CCL commands in the /private/ccl directory. Some users may prefer to skip this exercise and return to it once the next chapter on programming has been covered.

Open the text editor either by clicking on the icon, from the menu header
 Window > Editor > Open or typing the command ewo.

- In the Text editor window, click on **File** > **Open**.
- At the bottom of the window which opens, after Library Directories: click on Private.
- Of the files which have a green icon (*.ccl files) select my_swcallback.ccl and click on Open.

This file contains a single command

cmd Sw_callback(int cblevel, int item, int srf)

- Go to line 36 of the file (Ctrl-G or Edit > Goto Line, and enter 36).
- After the last break; and before the line default: add the lines:

case 14: uda; // User guide break;

When typing this entry you must take care that the first line ends with a colon (:), and the second and the third with a semicolon (;). On the second line anything following the // is treated as a comment.

• In the text editor window (not the main window)

```
File Edit

Sprintf(str1,"ocm18%+f\n",-cc[0]);
o 4 str1;
ite 2;
break;

Case SW_EBRSLIDER:
stp outp off;
ebr cc[0];
stp outp on;
break;

Case 14:
uda; //User guide
break;

default:
if (cblevel > 0 && cblevel < SW_MAXITERS)

{
    ite cblevel;
    uda;
}

else
{
    beep;
    msg("Callback not implemented.");
}

}
```

click on **File** > **Save**. Compilation should be automatic, and the message in the text window should be:

*CCL COMPILATION MESSAGES: No errors detected

To explain, if the slider-wheel callback CCL is enabled by the user, then the command **Sw_callback** is called whenever a slider-wheel is moved. When this happens, the value of the integer argument called **Level** is passed to the CCL command, where it appears as the integer cblevel. This determines which action to be taken by the callback command.

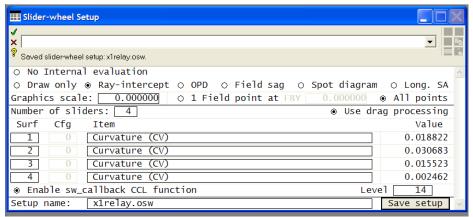
If the **sw_callback CCL function** is invoked with a value of **Level** between 1 and 9, that number of cycles of optimization (iterations) is performed. If **Level** is 11, then the sliderwheel controls field angle, and if **Level** is 13 it controls entrance beam radius. The option **Level** = 13 is used in one of the tutorials.

As a result of the change, if the **sw_callback CCL function** is invoked with a value of **Level** equal to 14, then a single command **uda** will be executed. This command (**update_all** in long form) has the effect of updating the graphics in all open updateable windows (i.e. those marked UW).

All this occurs within the switch statement, with different outcomes according to the value of cblevel, the switch parameter.

The listing of the modified CCL command is given below.

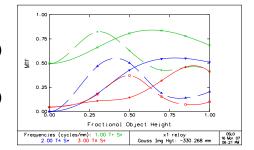
Listing of the modified slider-wheel callback CCL


```
* This file contains some simple callbacks that are used in the documentation examples
* with slider-wheel windows. It is meant to be extended by users as needs arise. The * callback uses the "cblevel" parameter to designate a particular action. The user then * enters the appropriate number in the Slider-wheel Setup window in the cell marked * "Level". The value of "Level" is passed to this command as "cblevel" and determines *
#define SW_MAXITERS
                                      10
#define SW_ANGSLIDER
                                      11
#define SW_DIFFRACTDBLT
                                      12
#define SW_EBRSLIDER
cmd Sw_callback(int cblevel, int item, int srf)
         switch (cblevel)
                   case SW_ANGSLIDER:
                   stp outp off;
                   ang cc[0];
                   stp outp on;
                   break;
                   case SW DIFFRACTDBLT:
                   sprintf(str1,"ocm18%+f\n",-cc[0]);
                   o 4 str1;
                   ite 2;
                   break;
                   case SW_EBRSLIDER:
                   stp outp off;
                   ebr cc[0];
                   stp outp on;
                   break;
                   case 14:
                   uda;//User guide
                   break:
                   default:
                   if (cblevel > 0 && cblevel < SW_MAXITERS)</pre>
                            ite cblevel;
                            uda;
                   else
                            beep;
                            msg("Callback not implemented.");
                   }
       }
```

Slider-wheel design using MTF at one frequency

- Plot the MTF curves at the spatial frequencies of 1, 2, and 3 cycles/mm as before.
- Open the slider-wheel spreadsheet.

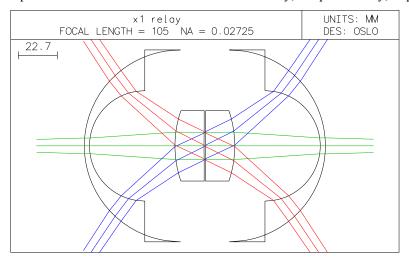
- Set up the slider-wheels as before, but this time click on Enable sw_callback CCL function.
- Enter Level as 14.
- Enter the **Setup name x1_relay** and click on the **Save setup** button.



This slider-wheel setup (the slider wheel definitions and the other data) is now saved in a file **x1_relay.osw**, which is stored in the directory .../private/bin/osw/

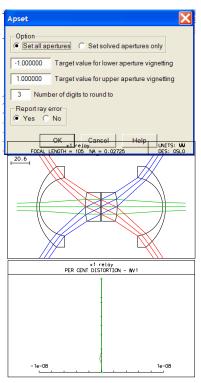
- Close the slider-wheel setup spreadsheet.
- On each slider-wheel change the step size to 1e-05 as before (these values are not stored in the slider-wheel data).
- Adjust the curvatures to maximize the MTF at 1 cycle/mm over the whole field.

One possible solution, illustrated here, is:


The smallest MTF value for this design is 0.42. This completes the design ask.

This example illustrates in microcosm how even a problem with clearly defined objectives and only 4 variables can have a large number of solutions, all meeting the requirements but differing in subtle ways.

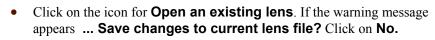
Setting clear apertures


The apertures at present are based on paraxial ray "solves." To complete the design, the clear aperture values must be set in accord with real ray, not paraxial ray, requirements.

- From the Optimize menu header select Support routines > Vignetting > Set apertures.
- Leaving all the choices as defaults, click on **OK**.

*APERTURES TYPE APERTURE RADIUS SRF SPC 300.000000 0 1 SPC 44.200000 32.000000 SPC 3 SPC 15.800000 4 SPC 8.360000 5 SPC 7.950000 8.360000 6 SPC 15.800000 SPC 8 SPC 32.000000 SPC 44.300000 10 CMP 300.550935

- If the slider-wheel spreadsheet is re-opened after the lens is saved, the previous setup will have been deleted from it. It can be retrieved by clicking in the Setup name window and right-clicking on x1_relay.osw from the list presented.
- Finally, enter the command pld mon to confirm that the level of distortion in the design is indeed very low.



Chapter 8 - Programming

Introduction

This chapter will include the basics of how to create a new command producing textual output, and how to include that command as one of the options in the text window header menu. Next there will be how to create a new graphics command, and how to create an icon for this in one of the graphics window headers. Finally there will be a brief review of the SCP and CMD languages.

To illustrate these, it is helpful to have a standard lens in storage.

- At the bottom of the window which opens, after Library Directories: click on Public.
- Select **demo > edu** and then click on **demotrip.len**.
- Click on Open.

Defining a new command: sno

In the surface data spreadsheet, the button labeled **Notes** gives access to the first 5 lines of the user-defined commentary which is stored with each lens. This consists of up to 10 lines, but the 6th is reserved for some optimization parameters, and the 10th for the public database lens class.

The standard OSLO command for listing the system notes is **opc sno**. There is no facility for calling this from the text window toolbar. This section shows how a new command, **sno**, which lists the system notes, can be written. Then the procedure for adding a label **Sno** to the text window (Standard Tools) toolbar will be given, so that the system notes (up to 10 lines of documentation stored with each lens) can be listed with a single click.

• First, try out the command from the keyboard. Type the command opc sno

*CONDITIONS: SYSTEM NOTES

1: This Cooke triplet is used throughout the OSLO documentation as an example.

2: It is a minor variation on a lens designed by hand by R. Kingslake (see "Lens 3: Design Fundamentals", pp286-295, Academic Press 1978, ISBN 0-12-408650-1), who 4: used nothing more than a hand calculator! The Cooke triplet was invented by 5: Dennis Taylor in 1893, and is still very widely used as a low-cost objective.

10: COOKE TRIPLET

CCL commands are stored in ASCII, and may be created either using the OSLO standard text editor, or using Notepad++, or (the least convenient) with Microsoft's Notepad®. Only the use of the first will be described in this chapter.

To create the new command:

 If the icon for Open the standard text editor appears on the main window taskbar, click on it. Otherwise from the Window menu header select Editor > Open. Alternatively type the command ewo in the command line.

• In the editor window, select **File > New** and type:

```
cmd sno(void)
{
    operating_conds(sno);
}
```

Note that there is no punctuation after (void), and there is a semicolon (;) after the single line command.

- Highlight the last three lines with the cursor and press **Ctrl-E** to check that the program has been entered correctly.
- There are only two menu options in the editor window header. Choose File > Save as..., click on the gray button labeled Private at the bottom, and choose File type: CCL files (*.ccl,*.ccx,*.h).
- Enter File name eval_sno and click on Save.
- Compilation takes place automatically:

```
*CCL COMPILATION MESSAGES:
```

No errors detected

should be the message which appears in the text window.

- Enter the new command in the command line: sno
- In the text editor window, add the documentation as

```
//
// Written by [your name] [date]
//
cmd sno(void)

// hlp: <P>SNO</P>
// hlp: <P> Prints the system notes.</P>
{
    operating_conds(sno);
}
```

• In the editor window header, (*not* the main window) click on **File > Save.** The compilation message will appear again:

```
*CCL COMPILATION MESSAGES:
```

No errors detected

Each command definition in the **private/ccl** directory must be unique, so do not attempt to save the command **sno** again in a *.ccl file of another name. The error message will be: *CCL COMPILATION MESSAGES:

eval_sno2.ccl 2: Duplicate procedure definition

and this error will persist until the duplicate procedure definition is removed.

Structure of a CCL command

CCL commands can be created by the user to automate sequences of actions, and to carry out calculations and plots specific to a user's requirements. They are stored as ASCII text in the directory .../private/ccl (not a sub-directory) and must be compiled before use.

The simplest CCL command can have the structure:

```
cmd command_name1()
    {
      OSLO_command1;
      OSLO_command2;
      ...etc...
}
```


This is stored in a file **demo_anyfilename.ccl**. (Prefixes of user-written command files should ideally be restricted to **demo_, eval_, graph_** and **optim_**). It is compiled using the icon (or, in the case of OSLO EDU where the icon is not displayed) the menu sequence **Tools > Compile CCL > Private**, or the command **ccl**.

It is executed using the call:

```
command name
```

For example, the CCL file containing the program;

```
cmd hallo(void)
    {
     printf("Hallo world\n");
    }
```

may be stored as **my_first.ccl**, compiled, and then called using the command:

```
hallo
```

This is described in detail in Help > OSLO Help > Contents > Programming > CCL Programming > Using CCL.

With formal parameters, or arguments, the structure of a CCL command might become:

```
real argument_name1;
int argument_name2;

cmd command_name(real argument_name1,int argument_name2)
    {
      OSLO_command1(argument_name1,argument_name2);
      OSLO_command2(argument_name1,argument_name2);
    }
}
```

This is compiled and then executed using (for example) either free format:

```
command_name 1.0 1
```

or the more formal version, often used within CCL code:

```
command_name(1.0,1);
```

In this case the two global variables **argument_name1** and **argument_name2** might be used by another CCL command.

Local variables may also be declared. Take, for example, the CCL command:

Search CCL library: scanccl

Assume that **eval_sno.ccl** has been added to the **private\ccl** directory, as described above.

- From the menu header select **Tools > Search CCL library** ...
- Under Directory to browse select the option Private
- Select the default option **Sort functions by filename** and click on **OK**.
- ** 8 functions are defined in the private directory:**
- ** C:\Program Files\OSLO\EDU64\private/ccl/

```
FCTN NAME ARGUMENTS LINE DEFINITION FILE
TYPE
cmd
                                    5 eval sno.ccl
             sno
             sw_callback
cmd
                                   15 my_swcallback.ccl
                       int
                              cblevel
                        int item
                        int
                              srf
                                    18 dbtutorial.ccl
             tlex 1
cmd
                        real
                              tl__radius1
                        real
                               tl__radius2
                        real
                               tl__refractive_index
```

The new command **sno** appears as the first entry in the list of function names; also given are the number of lines in the command, and the name of the file in which it was defined.

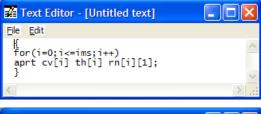
Defining a new command: ctn

The next new CCL command is an extension of one which appeared in chapter 3.

Initial version of command

 From the Window menu header select: Editor > Open, or type the command ewo in the command line, or click on the main window toolbar icon.

• Type in the following line:


```
for(i=0;i<=ims;i++)aprt cv[i] th[i] rn[i][1];</pre>
```

- Split it into two lines and surround with curly brackets.
- Highlight the whole window (Ctrl-A) and execute (Ctrl-E).

The following appears in the active text window:

```
1.0000e+20
                        1.000000
0.047059
            2.000000
                        1.620410
-0.006303
            6.000000
                        1.000000
-0.049383
            1,000000
                        1,616592
0.051813
            6.000000
                        1.000000
0.007080
           2.000000
                        1.620410
-0.057854
           42.950000
                         1.000000
                         1,000000
```

• Add a line at the beginning: cmd ctn()


```
Text Editor - eval_ctn.ccl

File Edit

cmd ctn()

for(i=0;i<=ims;i++)

aprt cv[i] th[i] rn[i][1];

}
```

- In the Text Editor window click on File > Save as...(F12).
- Ensure first that the bottom window reads Save as type: CCL files.
- Click on Library Directories Private.
- For File name type eval_ctn
- Click on Save.
- Look in the text window. There should be a message

```
*CCL COMPILATION MESSAGES:
No errors detected
If the message appears:
*CCL COMPILATION MESSAGES:
```

eval_ctn.ccl 2: Duplicate procedure definition

then there is already a file with extension .ccl in the private/ccl directory containing the line cmd ctn() Locate it and delete it, or change its extension to .ccx. It may be impossible to do this if file extensions are hidden. If so, it is necessary to change the Windows file viewing settings. Under My Computer > Tools > Folder options > View tab > Advanced Settings > Hide extensions for known file types: Uncheck.

If there is another compilation error, check the listing carefully, especially the one semicolon and the three different types of bracket:

```
cmd ctn()
{
for(i=0;i<=ims;i++)
aprt cv[i] th[i] rn[i][1];
}</pre>
```

Extra lines and spaces are not a problem.

 Once compilation is successful, in the command line enter ctn. The output should be as before.

Version with formatted output

• Change the **aprt** print statement to:

```
aprintf("%3i %12.8f %9.4g %.6f\n",i,cv[i],th[i],rn[i][1]);
```

Here, each format specification begins with a % sign:

The format specifier %3i requires that the integer i is to be printed with a field width of 3, right justified within this width.

The format %12.8f gives a minimum field width for cv[i] of 12 characters, with 8 digits printed after the decimal point.

The format %9.4g prints th[i] in decimal notation with 4 significant figures, but in exponential form if it is 10000 or more, or less than 0.00001.

The format %.6f requires n[i] to be printed with 6 digits after the decimal point, and no minimum field width.

Save and execute, giving:

```
0 0.00000000 1e+20 1.000000
1 0.04705882 2 1.620410
2 -0.00630318 6 1.000000
3 -0.04938272 1 1.616592
4 0.05181347 6 1.000000
5 0.00707965 2 1.620410
6 -0.05785363 42.95 1.000000
```

Adding the glass name string

Glass name strings are not directly accessible. However, the command get_glass_name(i) copies the name of the glass for the *i*th surface into a read-only string glass_name (See under Help > OSLO Help > Contents > Programming > Accessing Data > Other Data > Data Functions).

• Add an extra pair of curly brackets after the **for** statement, and insert:

```
get_glass_name(i);
```

• Change the print statement to (on a single line):

The format %.8s requires the glass_name string to be printed with a maximum of 8 characters.

• List the complete command:

Adding headers and documentation

The following conventions have been established by previous writers of OSLO macros, and they are worth observing:

1. Each CCL file opens with a set of three or more comment lines giving the author, date, and any update information. e.g.

```
//
// Written by [Your initials] [Date]
//
```

2. All documentation for a CCL command is given in HTML format between the header and the body, commented out and preceded by hlp. For example:

```
// hlp: <P>Lists curvature, thickness, glass type and refractive index.</P>
```

3. No default system variables are ever used, so that, for example, the command sequence

```
i=92;ctn;prt i
```

must always give the same result. So declare all variables as local variables within the command: e.g.

```
int i;
```

Of course these can have any name chosen arbitrarily, but by keeping to the default variable names, the **Ctrl-E** execution of selections of code within the text editor window can still proceed, provided the declaration **int i**; itself is not highlighted.

4. Commands which give just printed output are echoed, preceded by a star, in upper case. e.g.

```
print("*CTN");
```

Making these changes, the final version of the command becomes:

The output from a call of the command ctn is:

*CTN			
SRF	CV	TH GLASS	RN
0	0.00000000	1e+20 AIR	1.000000
1	0.04705882	2 SK16	1.620410
2	-0.00630318	6 AIR	1.000000
3	-0.04938272	1 F4	1.616592
4	0.05181347	6 AIR	1.000000
5	0.00707965	2 SK16	1.620410
6	-0.05785363	42.95 AIR	1.000000

The text window toolbar

Commands which generate only printed output are by convention placed in the text window toolbar. The format for a text window toolbar is:

```
menu toolbar_number
    {
          "Label,tooltip_label" = "command",
          "Label2,tooltip_label2" = "command2",
          }
}
```

where the first **Label** (by convention having only 3 or 4 letters) is what appears on the toolbar, the second, **tooltip_label**, is more detailed, and only appears in a cream-colored box when the cursor hovers over the first label. The **command** may be either CCL or OSLO command(s). The **toolbar_number** is **toolbar50** for the Standard Tools text window toolbar.

Adding the command sno to the toolbar

- Still in the Text Editor window, select File > Open and look in the Private CCL directory. Open the file a_menu.ccl.
- (If there is no file private/ccl/a_menu.ccl, open the file /public/ccl/a_menu.ccl, and save it as private/ccl/a_menu.ccl)
- Go to line 1339 of this file (Ctrl-G and enter 1339 in the dialog box). This should give the entries for:

menu toolbar50

• After the line:

```
"Len,Lens data" = "prt_len",

add the line (note the comma before the comment):

"Sno,System note" = "sno",//[your initials][date]
```

Compile again by saving the file:

```
*CCL COMPILATION MESSAGES:
No errors detected
```

```
Text Editor - a_menu.ccl

Elle Edit

// Text window toolbars

///

menu toolbar50 // Standard textout toolbar

{
    "Len, Lens data" = "prt_len",
    "Sno, System note" = "sno", // [your initials] [date]
    "Spe, Special data" = "spe",
    "Rin, Refractive index data" = "rin",
    "Ape, Aperture data" = "ape",
```

Calling sno from the toolbar

• Click on **Sno** in the text window toolbar. If it is not visible, ensure that the Standard Tools menu has been selected.

Once again the output is:

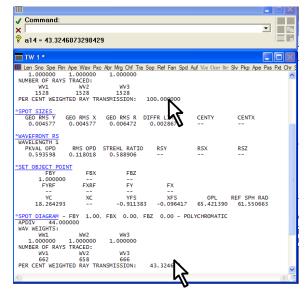
*CONDITIONS: SYSTEM NOTES
1: This Cooke triplet is used
throughout the OSLO documentation as
an example.

```
TW 1 *

Len Sno Spe Rin Ape Wav Pxc Abr Mrg Chf Tra Sop
Pxs Pxt Chr Sei Fif Zpxs Zspa Zsen Zchr Zsei Zfif Ref bo
Sps Wvf Mtf Psf Srf Cmp Grp
Mat Lay Stk Srt Xmt Gho
**CONDITIONS:** SYSTEM NOTES
```

2: It is a minor variation on a lens designed by hand by R. Kingslake (see "Lens 3: Design Fundamentals", pp286-295, Academic Press 1978, ISBN 0-12-408650-1), who 4: used nothing more than a hand calculator! The Cooke triplet was invented by 5: Dennis Taylor in 1893, and is still very widely used as a low-cost objective. 10: COOKE TRIPLET

Defining a new command: xmt


In this exercise a command **xmt** will be created which plots a graph showing the transmission fall-off across the field arising from vignetting. (The effect of coatings and of

the internal transmission of optical materials, available in OSLO Premium, is not included in this analysis).

The command will be modified to prevent errors occurring when no rays are transmitted, or when the chief ray fails. This will demonstrate the use of an error handler.

Then a new icon will be created, and placed in the Spot Diagram menu of the graphics window toolbar to enable the new command to be called with a single click.

Writing a command <u>xmt</u> to print transmittance values

- Open the lens file /public/demo/EDU/ demotrip.len
- In the Text Editor window, open a new file and type the following in a single line:

```
sbr;sop 0 0 0;spd 44;sop 1 0 0;spd 44
```

- Highlight with the cursor, press **Ctrl-E** and click on the two values of PERCENT WEIGHTED RAY TRANSMISSION (100.00 and 43.324607) which appear in the text window. Note the coordinates of the two spreadsheet cells (a6, a14).
- In the text editor, add a second line containing a print command.
 prt a6,a14;
- Highlight both lines and press Ctrl-E to confirm the correct values have been printed.

• The transmission curve is to be plotted at 50 points over a range of value of FBY from 0.0 to 1.0. Introducing the pre-defined integer i as a variable to count through these points, and we can generate all the results using a for loop:

To extract the relevant values from the spreadsheet, and print them as a neat table, we must switch off printed output with stp(outp,off) and extract the transmission values from the spreadsheet. The spreadsheet cell number of the transmission value of the (i+1)th field point is a(6+8i) or, as a CCL formula, ssb(6+8*i,1). Introducing the double precision predefined variables x (the value of FBY) and y (the % transmission), we can use these in a print statement to create the necessary table: prtx,y; This statement will produce visible output despite the fact that the preference stp(outp,off); has been called, provided prt and not aprt is used for printing.

Predefined variables are used at this stage because the **Ctrl-E** compilation method is incompatible with either local or global variables.

• So change the program to:

• Highlight it all and execute with **Ctrl-E** to generate the entire list of 51 values giving the percentage transmission across the field:

```
-- 100.000000

0.020000 100.000000

0.040000 100.000000

...etc

0.960000 47.120419

0.980000 45.811518

1.000000 43.324607
```

Converting xmt printed output to graphics

The text window spreadsheet is used as the vehicle for transferring the printed data into plot commands.

- At the beginning, add the command gwr;
 (graphic window reset) to clear the window and define the dimensions of the plot area to be in the range x=0 ... 1, y = 0 ... 1.
- Also before the first calculation, add the plot command, moveto(0,1) - most lenses will have 100% transmission on axis.

- Add pen(3) to plot in dark blue.
- Delete the print statement.
- Insert the main plot command, lineto(x,y/100); where the /100 scales the y-values to keep them within the range 0 ... 1.
- At the end, add gshow; to ensure that the plot output is drawn immediately and not held in a buffer. It may still be necessary to click on the window to have the graph drawn in full.

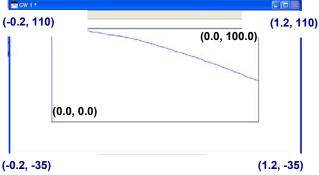
Preserving the text window contents

• In the second line, replace the sbr command by the two lines:

```
k=sbrow;
sbr(k,1);
```

• On the third last line, insert the line:

```
sbr(-k,0);
```


Here **k**, a predefined integer variable, has been used to keep the value of **sbrow**, the index of the first unwritten row of the spreadsheet.

Scaling and drawing the axes

• After the gwr command, add the following commands to re-scale the window as illustrated in the diagram, and to draw the axes around the graph:

```
window(-0.2,1.2,-35,110);
moveto(0,0);
lineto(1,0);
lineto(1,100);
lineto(0,100);
lineto(0,0);
```

Also change the lineto command to lineto(x,y) to cover the new range of y from 0 to 100.

• Finally surround the whole procedure with curly brackets, add the line cmd xmt() at the top, and save in file private/ccl/graph_xmt.ccl.

• Note that up to this point only predefined variables have been used (integers i,k double precision real x,y). Thus it is possible to highlight and execute part of, or the whole command (excluding the cmd xmt() header itself) using Ctrl-E. This is helpful for locating errors.

The listing of the command is as follows: cmd xmt()

```
stp(outp,off);
k=sbrow;
sbr(k,1);
gwr;
window(-0.2,1.2,-35,110);
moveto(0,0);
lineto(1,0);
lineto(1,100);
lineto(0,100);
lineto(0,0);
moveto(0,100);
pen(3);
for(i=0;i<51;i++)
   x=i*0.02;
   sop(x,0,0);
   spd(44);
   y=ssb(6+8*i,1);
   lineto(x,y);
   }
sbr(-k,0);
stp(outp,on);
gshow;
```

Adding standard plot commands to xmt

- Add the pre-processor command at the top of the file: #include "../../public/ccl/inc/gendefs.h"
- This makes it possible to call the two commonly used graphics commands:
 SAVE DISPLAY PREFS;

and

RESTORE_DISPLAY_PREFS;

 Following the convention already established, the captions will drawn using the command sequence:

```
if (char_pref(glab)) draw_title_block(str1,str2,str3);
```

where the code for draw_title_block(str1,str2,str3); can be found in the CCL file
public/CCL/graph_tools.ccl

Error handling

• Open the surface data spreadsheet and change the field angle to 30 degrees.

 Call the xmt procedure. The command will fail when the transmission falls to zero with an error message as shown

The remedy is to add an error handling procedure to reset the error flag to zero. This will be called from xmt whenever an error occurs. If a procedure invokes a second procedure, then either the second must precede the first, or it needs to be declared:

• Add the line at the top, the prototype declaration (note that this one is followed by a semicolon):

```
cmd xmt_error_handler();
```

- Declare an integer global variable xmt_err to carry the error status between the preedures.
- Add the error handler command xmt error handler at the end.
- The error handler can now be called. Before the window command, add the line:
 install_error_handler("xmt_error_handler"); and at the end add the
 command to restore the original (default) error handler:
 install_error_handler("prefs");

By adding the error handling precautions to the plotting routine, it is possible to prevent the execution of the spot diagram command if the chief ray has not been traced successfully and to continue execution of the command with the transmission value set to zero if no rays have been transmitted in the spot diagram.

Listing of complete command xmt

- Convert the predefined variables to locally defined variables, i becomes iplt, x becomes xplt, y becomes yplt, and k becomes ssb_row_sav.
- Add comments, documentation, ticks and captions etc as shown below.
- Save and compile. The whole procedure now looks like this:

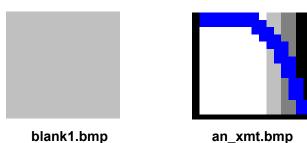
```
//
// Written by [your name] [date]
//
#include "../../public/ccl/inc/gendefs.h"
int xmt_err;//global variable
cmd xmt(void);
cmd xmt_error_handler(void);
cmd xmt(void)
// hlp: <P>XMT</P>
// hlp: <P>Plots the fall in transmission as a function of field
// hlp: arising from central obstructions and vignetting. It does not
// hlp: include the effects of coatings or Fresnel reflections.</P>
// hlp: <P>This CCL command also illustrates how a custom error
// hlp: handler prevents reference ray failures terminating execution
// hlp: of a CCL command; by setting errno=0 within the error handler
// hlp: it permits continued execution of the CCL command even after
// hlp: what would otherwise be a fatal error. </P>
```

Chapter 8

```
static int ssb_row_sav,iplt;
    static real xplt, yplt;
    static char str1[80],str2[80],str3[80];
    SAVE_DISPLAY_PREFS;//as defined in gendefs.h
    set_preference(output_text, off);//switches off text output
    ssb_row_sav = sbrow;//saves row after last row written to in SSB
    ssbuf_reset(ssb_row_sav, 1);//initialises spreadsheet buffer
    graphwin_reset;//clears graphics window
       install_error_handler("xmt_error_handler");// see below
       window(-0.2, 1.2, -35, 110);//xmin xmax ymin ymax
       moveto(0, 0);// draw x-axis (range 0...1)
       lineto(1, 0);
       for (iplt = 1; iplt <11; iplt++)</pre>
            {moveto(iplt*0.1, 0);//draw x-axis ticks
           linerel(0, -2);}
       moverel(-0.2,-10);
       label("Rel.Obj.Ht.");//label x-axis
       moveto(0, 0);// draw y-axis (range 0...100)
lineto(0, 100);
        for (iplt = 1; iplt <11; iplt++)</pre>
           moveto(0,iplt*10);//draw y-axis ticks
            linerel(-0.02,0.0);
        moverel(-0.1,0);
       label("%s","100%");//label y-axis
       moveto(0,100);// plot transmission curve
        pen(2);//green
       for (iplt = 0; iplt <51; iplt++)</pre>
            xplt=iplt*0.02;// xplt=Relative object height (FBY)
            yplt=0;
            xmt_err=0;
            set_object_point(xplt,0.0,0.0);
            if (xmt_err==0)// i.e. If sop succeeded ...
                 spot diagram(44):
                if(xmt_err==0)// .. and spd succeeded ...
                 yplt=ssb(6+8*iplt,1);//..set yplt ...
                 }// ... else yplt remains zero.
            lineto(xplt,yplt);
       message("");// clears message area
        install_error_handler("prefs");// default - see asyst_ccl.ccl
    ssbuf_reset(-ssb_row_sav, 0);//restores ss buffer row numbering
    set_preference(output_text, on);//switches text output back on
   pen(1);// black
    if (char_pref(glab))// only if preference graphics_labels ON ...
        sprintf(str1, "Field angle %.4f", 180*ang/pi);
        sprintf(str2,"Object height %.6g",obh);
       sprintf(str3,"TRANSMITTANCE VS FIELD");
       draw_title_block(str1,str2,str3);//see public/graph_tools.ccl
    gshow;//clears graphics buffer, forces display of graphics
    RESTORE_DISPLAY_PREFS;
cmd xmt_error_handler(void)
   xmt err=errno;
    errno = 0;//clears error to permit CCL execution to continue
```

The graphics window toolbar

Commands which generate graphical output are generally called from icons on one of the graphics window toolbars. The format for a graphics window toolbar is:


menu toolbar_number

```
{
"bitmap_file, tooltip_label" = "gwt \"window_title\"; gwe \"command\";",
...
}
```

where **bitmap_file.bmp** is the name of a bitmap file containing the icon, and stored in the folder /[OSLOXX Edition]/bin/bma. where OSLOXX Edition might be, for example, OSLO66 Premium. Once again, tooltip_label appears in a cream-colored box when the cursor hovers over the icon. The window_title (up to 48 characters) will appear in the blue title bar of the updatable graphics window.

Creating a new icon for xmt

- Using the computer file listing facility, locate the redundant blank icon **blank1.bmp**, which is the first file in the directory /[OSLOXX Edition]/bin/bma This is a file 16 x 15 pixels (all gray) with a palette of 16 colors, plotted at a resolution of 96 pixels per inch.
- Copy it to the same directory, and rename it **an_xmt.bmp**
- If time permits, modify the image pixel by pixel as shown, using a program such as Microsoft Paint®, and store it with the same name.

Adding the xmt icon to the graphics window toolbar

In **a menu.ccl**, the toolbar number is 34 for the Spot Diagram Analysis graphics window.

- Open the Text Editor window, select File > Open and look in the Private CCL directory. Open the file a_menu.ccl.
- Locate toolbar 34. Go to line 1241 of this file (**Ctrl-G** and enter **1241** in the dialog box). On this line (or one nearby) should be the entries for the toolbar menu:

menu toolbar34 // Spot Diagram Analysis

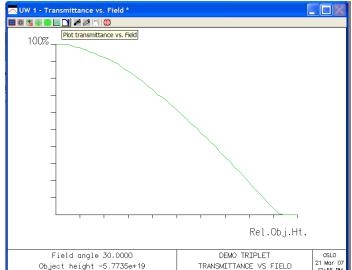
After the line:

```
"plt_spd_fld,Plot RMS Spot Size/OPD vs. Field" = "gwt \"RMS Spot Size vs. Field\";gwe \"spsopd:spsopd\"",
```

add the following, all on one line (note the comma before the comment):

"an_xmt,Plot transmittance vs. Field" = "gwt \"Transmittance
vs. Field\";gwe \"xmt\";", // [your name] [date]

- Save a_menu.ccl.
- Check that compilation is successful:


*CCL COMPILATION MESSAGES:

No errors detected

Calling xmt from the toolbar icon

- Ensure that the lens in store is the standard triplet with 30 degrees as the semi-field angle.
- Open a new graphics window.
- Click on the Setup Window/Toolbar icon, and select the Spot Diagram menu.
- Click on the xmt icon shown above.

SCP programming: *triplet

SCP ("star command program") is the old macro language of OSLO, still supported but largely replaced by CCL. An SCP command consists of a text file whose name is the same as the command name, and whose first line is *[cmd_name] without a semicolon. All the other lines are commands ending with semicolons, and the file named **cmd_name.scp** must be stored in the directory /private/scp. The command is not compiled, so errors are not detected until the commands are executed.

To call an SCP command, type *[cmd_name] into the command line.

- Open the text editor window.
- Click on File > New
- Type the following lines:

```
*triplet
open len pri len trip.len n;
gwo 2 320 300 0 100;
rpt_ric ray 0.1 0 1 0.2 0.1 1 .005;
   3 320 300 320 100;
rpt tfr 100.0;
     4 320 300 640 100;
rpt_spd 50 0.0 3 0.2 n;
    5 320 300 0 400;
rpt_psf "128" 64 chr .25 aut .12 .06;
```

The first line must begin with a * and have no semicolon after it. The first gwo command opens a new graphics window, GW2, which is 320 units wide and 300 high in the top left corner of the window, just under the command window. Three more windows are defined in the same way.

- Except for the very first line, the entries may be tested during entry by highlighting them with the cursor and pressing Ctrl-E.
- In the text editor window, click on File > Save as ...
- Change File type to **SCP**.
- Click on **PRIVATE** to store the command in /private/scp/
- Enter file name as **triplet.scp**. The file name must be the same as the command name, and only one command is permitted per file. Note that no compilation takes place, so there is no checking for errors before execution.
- This command opens the triplet stored in the private lens directory on installation, and plots the ray intersection coordinates, the MTF, the spot diagram and the point spread function at three field point. Parameters for each of these commands are chosen to suit the lens.
- To call this SCP command, type:

```
*triplet
```

including the initial asterisk. Some examples of SCP commands are given in the directory /public/scp.

Load command file programming

This is available only in OSLO Standard and Premium versions.

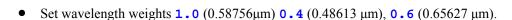
The command <code>lcmd</code> opens a text file and executes the OSLO commands in sequence. Unlike CCL and SCP files, the location of the file is quite arbitrary, so this programming language has the advantage that the files can be stored with the lenses. Semicolons at the end of each line are optional, but including them makes it easier to check the command file while it is being developed, using <code>Ctrl-E</code> in the text editor window.

• Open the text editor and type:

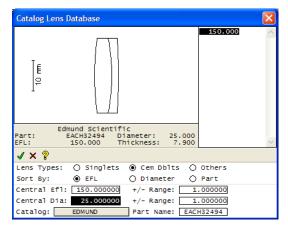
```
//triplet [your name] [date]
open len pri len trip.len n;
gwo 2 320 300 0 100;
rpt_ric ray 0.1 0 1 0.2 0.1 1 .005;
gwo 3 320 300 320 100;
rpt_tfr 100.0;
gwo 4 320 300 640 100;
rpt_spd 50 0.0 3 0.2 n;
gwo 5 320 300 0 400;
rpt_psf "128" 64 chr .25 aut .12 .06;
```

- In the text editor window, click on File > Save as ...
- Store it as a text file in the **private/len** directory with type .txt and with the name triplet.cmd.
- To execute, type in the command line lcmd, search in the private/len directory for the command file triplet.cmd, and click on Open to execute.

Chapter 9 - Optimization


Optimizing using Seidel aberrations

According to Seidel aberration theory, a thin cemented doublet of a specified pair of glass types (one crown, one flint) may in general be corrected exactly for only two of the three coefficients for primary axial chromatic aberration (PAC), spherical aberration (SA3), and coma (CMA3). Using one real and one fictitious glass, however, an exact solution can always be found.


This exercise will show how to find, using Seidel aberrations alone, the nearest glass in the Schott catalog to combine with Schott N-BAK4 making a cemented doublet of a focal length 150 mm, and aperture ratio f/6.3.

Setting up the starting design

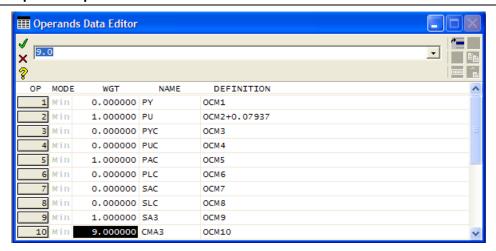
- Open a new lens surface spreadsheet.
- Select the image surface. Click on the gray SRF button, right click, and choose Insert catalog lens.
- Select the EDMUND catalog, and look for a © cemented doublet focal length 150 mm diameter 25
- If +/-1 mm ranges are chosen there is only one result. The Edmund catalog number for this lens is **EACH32494**.
 The glass types used in this lens are Schott BK7 for the crown and Schott SF5 for the flint.
- Set the entrance beam radius to be 150/2/6.3 mm.
- Set the semi field angle to 1°.

- Delete the extra surface, by clicking on the gray SRF button for surface AST, right click, and choose Delete.
- We need to be able to alter surfaces 1 2 and 3. Click on the gray SRF button for surface 1 (AST), right click, and choose Ungroup.
- Set the image distance at the paraxial back focal point (under thickness for surface 3, select Solves (S) > Axial ray height > Solve value = 0.0).
- Listing the lens at this stage gives:

*LENS	DATA			
Doubl	et f/6.3 150 m	nm.		
SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS SPE NOTE
OBJ		1.0000e+20	1.7455e+18	AIR
AST	91.370000	5.700000	12.500000 A	BK7 C
2	-66.210000	2.200000	12.500000	SF5 C
3	-197.710000	146.149598 S	12.500000	AIR
IMS			2.618244 S	

Defining the error function

- First, close all open spreadsheets (this is important).
- Calculate the angle for the marginal axial ray angle at the image for an f/6.3 beam: Type into the command window 0.5/6.3 and record the result:


Result = 0.0793650793651

- From the Optimize menu header, select Generate error function> Aberration operands
- Then, in the operands data editor which opens, set non-zero weights for just the four operands listed below:

OPERAN D	MODE	WEIGHT	NAME	DEFINITION
2	MIN	1.0	PU	OCM2+0.07937
5	MIN	1.0	PAC	OCM5
9	MIN	1.0	SA3	ОСМ9
10	MIN	9.0	CMA3	OCM10

For each operand, the **MODE** is MIN (minimization) rather than CON (constraint) which is equivalent to an infinite weight. (The latter is rarely of value). The **WEIGHT** gives the relative importance of each operand, and here coma has (arbitrarily) been given higher weight than the other two aberrations. The **NAME** is for information only, and has no effect on the optimization process. The **DEFINITION** is a string ocm followed by the element number of the optimization common matrix, Ocm[], that contains the value of the relevant operand calculated by the optimization CCL callback procedure **opcb_abs**. This string may include one arithmetical operand and one constant.

For example, operand 2, sets the non-zero target value for PU (the axial ray angle in image space) to be equal to -0.07937. The entrance beam radius is fixed, so that, by controlling the value of PU in the image space, the focal length of the lens will be controlled to be at or near 150 mm since the optimization will seek to reduce the operand PU-0.07937 to zero. Of course defining operand 21 (EFL) as OCM21-150.0, and assigning it a non-zero weight, would have had the same effect.

 Close the operands data editor spreadsheet. If it needs to be opened again press the Edit optimization operands icon.

- Click on the icon to open the optimization conditions spreadsheet.
- Note the entry for the optimization callback, Command for CCL/SCP operands: opcb_abs
- On the bottom line, under Error function value, select Weighted sum of squares.

Hence the formula for this error function becomes:

```
Min error fn = 1 * (PU + 0.07973)^2 + 1 * (PAC)^2 + 1 * (SA3)^2 + 9 * (CMA3)^2
```

• Close the optimization conditions spreadsheet.

To list the starting value of the error function and its component operands:

• In the text window, click on **Ope**

```
*OPERANDS
 OP MODE
             WGT
                                    VALUE %CNTRB DEFINITION
                                4.4317e-06 0.00 OCM2+0.07937
-0.003508 34.19 OCM5
           1.000000 PAC
           1.000000 PU
0 2
     M
0 5
    M
                                 -0.004828 64.76 OCM9
0 9
     M
           1.000000 SA3
O 10 M
           9.000000 CMA3
                                  0.000205 1.05 OCM10
MIN ERROR FUNCTION:
                      3.5988e-05
```

• To print the minimization error function alone, type the command:

```
ope erf
MIN ERROR FUNCTION: 3.5988e-05
```

Description of the Aberration Operands error function

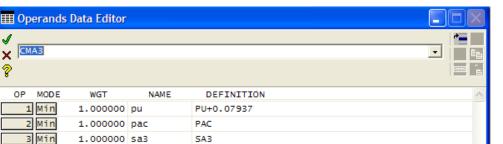
The aberration operands error function consists of a set of predefined operands, including paraxial ray heights and angles, and Seidel and Buchdahl aberration coefficients. All the default weights are zero, so that at least one non-zero weight must be specified before it be used.

The menu header sequence which generates the error function calls the CCL command **opabs_template** in file **/public/CCL/optim_erfs.ccl**. This includes a command:

```
opt_oprdccl("opcb_abs");
```

which sets the CCL command <code>opcb_abs</code> (in file <code>/public/CCL/optim_callbaks.ccl</code>) as the optimization callback. This in turn contains CCL code which is called every time the error function is evaluated. This callback command, <code>opcb_abs</code>, outputs the values of Gaussian and Seidel quantities to the text window spreadsheet, and then copies selected values into the Ocm[] matrix. The key lines of the code from the command <code>opcb_abs</code> are listed here:

```
paraxial_trace();
Ocm[2] = ssb(1, 2); // pu
chromatic_abers();
Ocm[5] = ssb(2, 1); // pac
seidel_abers();
Ocm[9] = ssb(3, 1); // sa3
Ocm[10] = ssb(3, 2); // cma3
```


The relevant lines of CCL in the **opabs_template** command, which sets up the operands, are:

Users of OSLO Standard and OSLO Premium do have the facility to define the error function as here described. However they do have a more direct way to define the error function, using predefined operands with self-explanatory names. This obviates the need for a CCL callback. The procedure for this is:

• Delete any pre-existing operands using the command sequence:

```
ope new; end
```

- Open the operand spreadsheet.
- Add three blank lines and then fill in the entries as shown in the diagram:

• Close the operands data editor spreadsheet and click on **Ope** to list the operands.

CMA3

Creating a model glass

9.000000 cma3

4 Min

Before a glass type can be made variable, it needs to be converted to a "model" glass. Open the lens data spreadsheet. Change the glass at surface 1 from **BK7** to **N-BAK4**

- Under GLASS for the second surface, click on the gray button next to SF5 and select Model... (M).
- Press Enter three times to accept the default name (GLASS2), refractive index, and Abbe V-value.
- Click on Rin to list the refractive indices. Although the model glass is specified only by
 its refractive index at the d wavelength and Abbe number, the refractive index data for F
 and C wavelengths remain almost unchanged.

Defining the optimization variables

- In the surface data spreadsheet, define the variables: Under **GLASS** for the second surface GLASS2, click on the gray button, and select **Variable RN/DN**. (The **Special Variable RN/DN** option is exactly equivalent). Note that although the Abbe number is used to define the dispersion for the model glass it is the OSLO "DN" which is used as a variable. This is a normalized parameter, best visualized in the index-dispersion plot. DN takes a value of 0.0 along the line joining N-FK5 and N-SK16, and a value of 1.0 along the line joining N-FK5 and SF11. Nearly all catalog glasses sit between these two lines, but most of the "normal" glasses tend to cluster about DN = 1.0.
- Click on the variables button at the top of the spreadsheet, and put an upper limit of 1.0 for the value of DN, the dispersion parameter for surface 2. Leave the lower limit as 0.
 - 5.05
- Also set the minimum value of RN surface 2 as 1.48, the index of FK51, and the maximum value 1.85, the index of N-LaSF9, the highest index glass which can be regarded as having reasonable cost and acceptable environmental properties.
- Click on "Vary all curvatures".
- Close the variables spreadsheet and the surface data spreadsheet.
- Save the lens. The listing is given here:

*LENS	DATA				
Doubl	et f/6.3 150 :	mm			
SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS SPE	NOTE
OBJ		1.0000e+20	1.7455e+18	AIR	
AST	91.370000	v 5.700000	12.500000 A	N-BAK4 C	
2	-66.210000	v 2.200000	12.500000	GLASS2 V	
3	-197.710000	V 121.451048 S	12.500000	AIR	
IMS			2.182779 s		

Optimization

• Using the header of the Text window, list the operands (**Ope**) and the variables (**Var**).

94				Chapter 9			
*01	PERANDS						
OI	MODE	WGT	NAME	VALUE	%CNTRB	DEFINITION	
0 3	L M		PY	1.7764e-15		OCM1	
0 2	2 M	1.000000	PU	-0.015829	2.24	OCM2+0.07937	
0 3	3 M		PYC	2.182779		OCM3	
0 4	1 м		PUC	0.017260		OCM4	

M 1.000000 PAC -0.081694 59.77 OCM5 0 5 ---- OCM6 0 6 M PLC -0.000343 SAC -0.053498 -- OCM7 0 8 SLC -0.000226 OCM8 M -0.063974 36.65 OCM9 0.004069 1.33 OCM10 1.000000 SA3 0 9 M O 10 M 9.000000 CMA3

MIN ERROR FUNCTION: 0.011166

*VARIABLES

VB	SN	CF	TYP	MIN	MAX	DAMPING	INCR	VALUE
V 1	2	-	CV			1.000000	0.000100	0.010945
V 2	3	-	CV			1.000000	0.000100	-0.015103
V 3	4	-	CV			1.000000	0.000100	-0.005058
V 4	3	-	RN	1.480000	1.850000	1.000000	0.001000	1.672698
V 5	3	-	DN		1.000000	1.000000	0.001000	0.929017

Optimize for 10 cycles (**Ite**).

*ITERATE FULL 10 DAMPING MIN ERROR CON ERROR PERCENT CHG. NBR 0 1.0000e-08 0.011166 -- 75.179931 -- 99.761674 -- 96.329101 -- 99.999575 -- 99.999976 -- 99.999958 -- 99.999901 3.792096 0.002771 1 0.002633 6.6051e-06 0.000615 2.4247e-07 4 7.8298e-06 1.0315e-12 5 1.2696e-09 2.4261e-19 6 1.2696e-09 1.0128e-25 7 1.2696e-09 1.0075e-31 1.269595 8.3919e-32 16.703389

Choosing a real glass type

Find the DN value of the new glass:

var 5

*VAR	IABLE	S						
VB	SN	CF	TYP	MIN	MAX	DAMPING	INCR	VALUE
V 5	2	-	DN		1.000000	1.000000	0.001000	0.998766

List its refractive indices and Abbe V-value

rin 2 2

*REFR	ACTIVE INDICES					
SRF	GLASS/CATALOG	RN1	RN2	RN3	VNBR	TCE
2	GLASS2	1.694707	1.711261	1.687937	29.785506	82.000000

- Open the surface data spreadsheet.
- Click on the gray button for surface 2 glass.
- Select **FIX** and choose the latest Schott catalog (either **Schott**, or **Schott 2004**, depending on the edition of OSLO). In any event the glass chosen should be SF-15.
- Enter rin 2 2:

*REFR	ACTIVE INDICES					
SRF	GLASS/CATALOG	RN1	RN2	RN3	VNBR	TCE
2	SF15	1.698952	1.715461	1.692215	30.067619	79.000000
	SCHOTT					

- Open the glass catalog database.
- From the menu header select File >Open database > PUBLIC >
 glass_schott.cdb (it may be glass_schott2004.cdb in some versions of OSLO)
- In the GLASSNAME column, click on **SF15**.

Note that the glass is highlighted in yellow on the n-V diagram. The atmospheric and chemical properties are found in the column labeled **ChemCode** (10112). These are not bad, but a better glass, the lead- and cadmium-free equivalent is N-SF15 with a **ChemCode** of 10111.

Change the glass for surface 2 to N-SF15: under the gray button for GLASS, select
 Catalog > Schott and click on N-SF15 - it is not possible to just type in the name to
 replace a model glass.

Final optimization steps

Reoptimize with the remaining parameters (the three surface curvatures).

Click on Ite:

```
*ITERATE FULL 10

NBR DAMPING MIN ERROR CON ERROR PERCENT CHG.
0 1.0000e-08 2.7751e-05 -- 0.759895
1 1.0000e-12 2.7520e-05 -- 0.073851
3 1.0000e-12 2.7519e-05 -- 0.003876
4 10.000000 2.7519e-05 -- 1.0937e-06
```

Autofocus

Refocus to minimize the root mean square axial wave aberration, averaged over the three wavelengths:

- Open the surface data spreadsheet.
- Under the gray THICKNESS button for surface 4 select Autofocus minimum RMS
 OPD > On axis (polychromatic).
- Right click on the text window, and choose Clear window and SS buffer.
- Click on Len

*LENS	DATA								
Doubl	et f/6.3 150	mm	L						
SRF	RADIUS		THICKNESS		APERTURE RAI	DIUS	GLASS	SPE	NOTE
OBJ			1.0000e+20		1.7455e+18		AIR		
AST	94.166056	v	5.700000		12.500000	A	N-BAK4	C	
2	-67.121889	v	2.200000		12.500000		N-SF15	C	
3	-273.328281	v	146.658952	S	12.500000		AIR		
IMS			0.080939		2.639626	S			

• It is worth combining the distances for surfaces 3 and 4 to avoid confusion: Click on the defocus value.

b5 = 0.0809387292198

- In the surface data spreadsheet, set the defocus value (thickness surface 4) to 0.
- Also click on the thickness for surface 3, and in the command line add +b5.

146.6589521609103+b5

• Finally, list the lens again:

*LENS	DATA						
Double	et f/6.3 150	$\boldsymbol{m}\boldsymbol{m}$					
SRF	RADIUS		THICKNESS	APERTURE RADIUS	GLASS	SPE	NOTE
OBJ			1.0000e+20	1.7455e+18	AIR		
AST	94.166056	v	5.700000	12.500000 A	N-BAK4	C	
2	-67.121889	v	2.200000	12.500000	N-SF15	C	
3	-273.328281	v	146.739891	12.500000	AIR		
IMS				2.639626 S			

Optimization using finite rays

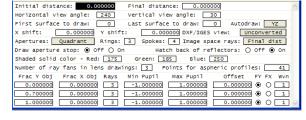
The optimization exercise described in this section will be carried on into the tolerance calculations of the next chapter. Because the starting design is well optimized, the initial choice of error function and weights is not critical. The GENII error function, which is given in all versions of OSLO, will be used for the initial design stages.

50 mm f/5.6 objective: specification

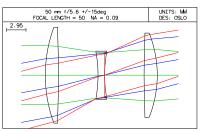
Design a triplet objective with a focal length of 50 mm, and a 15° semi-field of view, with aperture f/5.6. Vignetting is not permitted - that is to say, the full diameter beam must pass at all field angles. The final detector will be a photographic film with resolution out to 30 cycles/mm, and an MTF of at least 0.1 is required at this spatial frequency. Distortion is not critical. Only current Schott glass types can be used, and manufacture is to be at Rodenstock, by traditional methods, with dimensions marked on the final drawing in mm.

Finding a starting design

The most obvious starting point is the standard triplet supplied with the program. The first task is to set it up with the correct field, aperture and wavelength weights and to allow the aperture stop (drawn with a red pen) to move separately, rather than being assigned to an air-glass surface:


- Click on the icon for Open an existing lens.
- At the bottom of the window which opens, after Library Directories: click on Public.
- Select **demo > edu** and then click on **demotrip.len**.
- Click on Open.
- Open the surface data spreadsheet.
- Change the lens identifier to 50 mm f/5.6 +/-15deg
- Click on Wavelength. Define the wavelength weights as 1.0 (.58756) 0.4 (.48613),
 0.6 (.65627) and close the wavelength editor.
- Click on **Notes**, delete all 5 lines of notes and replace with your own annotations.
- Change the entrance beam radius to 4.5 mm. That is, 50/5.6/2, rounded up.
- Change the field angle to 15°
- Click on the gray button for **Aperture radius** for surface 1, select **Not checked**. Repeat for surface 6.
- Click on surface 5.
- Right click and select **Insert before**
- Change thickness for surface 4 from 6 to 0.0, and thickness for surface 5 frm 0 to
 6.0.
- Click on the button for **Aperture radius** for surface 5, and select **Aperture stop**.
- Click on the gray button under **Special** for surface **5 (AST)**.

- Select Surface Control (F) > General
- On the second line, against Surface appearance in lens drawings: select Drawn. Set the Pen number for surface in lens drawings as 4 (red).
- Set all the lens aperture radii to **Solve**. The aperture pickup on surface 2 vanishes.


Checking for vignetting in the starting design

In the triplet provided, the ray drawing conditions have been changed to allow for the vignetting. The first need is to restore the off-axis beams drawn to their full diameter.

- Click on the Edit Lens Drawing Conditions icon.
- In the section which governs rays drawn at the foot of the spreadsheet, change the number of rays for fan No. 2 from 0 to 3. Set the Min Pupil to -1.0 and the Max Pupil to +1.0 for fan No. 3.

- Close the Lens Drawing Conditions spreadsheet.
- Draw the lens.
- Click on **Len Wav** and **Pxc** to list the lens.

13.397605

-149.381547

*LENS	DATA							
50 mm	f/5.6 +/-15de	eg						
SRF	RADIUS	THICKNESS	APERTURE	RADIUS	GLASS	SPE	NOTE	
OBJ		1.0000e+20	2.6795e	+19	AIR			
1	21.250000	2.00000	7.304	439 s	SK16	С		
2	-158.650000	6.00000	6.710	505 ຮ	AIR			
3	-20.250000	1.00000			F4	C		
4	19.300000		3.420	953 ຮ	AIR			
AST		6.000000	3.420	953 AS	AIR	*		
6	141.250000	2.00000	5.931	324 S	SK16	С		
7	-17.285000	42.950000	6.415	576 S	AIR			
IMS			13.376	446 S				
*WAVEI	LENGTHS							
CURREN	NT WV1/WW1	WV2/WW2	WV3/WW3					
1	0.587560	0.486130	0.656270					
	1.000000	0.400000	0.600000					
*PARA	XIAL CONSTANTS	5						
Eff	fective focal	length: 50	.000541	Lateral	magnification	on: -	5.0001e	-19

0.089999

5.555616

-1.205771

Gaussian image height:

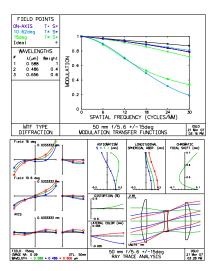
Petzval radius:

Numerical aperture:

Working F-number:

Lagrange invariant:

Assessing the starting design


The diagram above indicates the edge thicknesses of the positive components are far too small for economic manufacture. The center thickness of the negative lens needs increasing as well. And the stop needs to move away from the second surface of the negative lens to allow a plane diaphragm plate to be used.

- In the Standard Tools graphics menu, click on the Through-Frequency MTF icon.
- Right click in the graphics window, and select **Recalculate with new parameters...**
- Enter **Maximum frequency 30** cycles/mm.

The resolution, especially in the off-axis points, needs improvement, but otherwise the performance is good.

- Click on the icon for ray intercept curves.
- Right click in the graphics window, and select **Recalculate with new parameters...**
- Enter a value of 0.03333 mm (the reciprocal of the customer-defined spatial frequency) for the User aberration scale.

The transverse aberrations at all wavelengths in the meridional (Y) section off axis particularly need to be reduced.

Defining and validating the error function

- From the Optimize menu header, select Generate error function > GENII Ray Aberration...
- Fill in the entries for a **Design frequency** of **30** cycles/mm.
- Fill in the pupil coordinates on the basis of no vignetting: F1 (on axis) fymax = 1.0 F2 (0.7 field) fymin = -1.0 fymax = 1.0 fx = 1.0
 F3 (edge of field) fymin = -1.0 fymax = 1.0 fx = 1.0.
- The tolerance on distortion at both F2 and F3 is **distol** = **10**% (in other words, distortion will not be tightly controlled).
- Finally click on **OK** to close the Geniierf spreadsheet.
- Type in the command line ope all to list the operands that have been defined by this command. (Operands which begin with an underscore are not listed by clicking on the Ope icon in the text window.)

Only the first 13 are listed below.

	+ODED AND C								
*OPERANDS									
	C	P	MODE	WGT	NAME	VALUE	%CNTRB	DEFINITION	
	0	1	M		_Dy tol	0.005556		0.005555555556	
	0	2	M		_2.1 Dy	0.011667		0.0116666666667	
	0	3	M		_2.8 Dy	0.015556		0.015555555556	
	0	4	M		_3 Dy	0.016667		0.016666666667	
	0	5	M		_4 Dy	0.022222		0.02222222222	
	0	6	M		_up Dy/3	0.283656		0.283655904077	
	0	7	M		_3.2 up Dy	2.723097		2.72309667914	
	0	8	M		_uprime	-3.5749e-14		PU+0.0899990260196	
	0	9	M	1.000000	Fnb diff	-3.5749e-10	0.00	08/0.0001	
	0	10	M	1.000000	Focus diff	0.704983	0.26	DYY(1,1)/04	
	0	11	M	1.000000	Axial DY	0.035247	0.00	DY(1,2)/01	
	0	12	M	1.000000	Axial OPD	-1.189682	0.75	OPD(1,2)/06	
	0	13	M	1.000000	Axial DMD	1.828939	1.78	DMD(1,2)/06	

The first weighted operand controls the focal length rather tightly. In the initial stages of design it is preferable that this be relaxed. So:

- Click on the icon for Edit optimization operands.
- Change the weight for operand 9 from 1.0 to **0.1**.
- List the operands, noting in particular any that have contributions above 10%. They are:

```
O 21 M 1.000000 0.7 OPD U -5.224602 15.30 OCM21/OCM6
O 22 M 1.000000 0.7 DMD U 4.600139 11.86 OCM22/OCM6
O 24 M 1.000000 0.7 OPD L -4.782094 12.82 OCM24/OCM6
O 36 M 1.000000 1.0 OPD U -5.267896 15.55 OCM36/OCM6
O 37 M 1.000000 1.0 DMD U 6.020660 20.31 OCM37/OCM6
```

These are respectively, for the 0.7 field point, wave aberration and color for the upper Y-section ray, and wave aberration for the lower ray; also for the full field, wave aberration and color for the upper Y-section ray. These are the same aberrations as the plot above indicates will be causing the greatest reduction in MTF, so the error function has been validated.

Note that the initial value for the error function is given on the last line of the operand listing as the root mean square of the weighted contributions:

MIN RMS ERROR: 2.434848

Description of the GENII error function

The GENII error function provided with all versions of the program is remarkably sparse yet effective. It makes maximum use of the results of ray-tracing from a single marginal ray on axis, and a chief ray and three rays in the pupil for each of two other field angles. The aberrations of these rays constitute the error function.

The error function has two weighted operands controlling the Gaussian properties, three to control the axial image formation (transverse ray aberration DY, wave aberration OPD and Conrady chromatic variation in wave aberration DMD for color control), and 13 to control the four rays at each of the off-axis points at FBY = 0.7 and 1.0. This makes a total of 31, leaving the remaining 19 for necessary data storage.

Because the dimensions of transverse ray aberrations, wavefront aberrations, longitudinal errors and color are so different, the error function uses scaling factors on each to enable the default value of unity weighting as the starting value for each operand. For example, the basic scaling factor on transverse errors is $(6 \text{ N})^{-1}$ where N is the design spatial frequency.

Defining the error function invokes a call to **geniierf()** (or, for users of OSLO-EDU, **geniierf_lt**) which is in **public/ccl/optim_erfs.ccl**. The OSLO EDU version specifies **geniiops** as a callback, which will be found in **public/ccl/optim_callbaks.ccl**. More information is available in OSLO Help.

Defining the optimization variables

- Open the surface data spreadsheet.
- Click on the gray button for thickness 2, and select **Variable**.
- Repeat for thicknesses 4, 5, 7.
- Click on the **Variables** button to open the variables spreadsheet.
- Click on the **Vary all curvatures** button.
- For variable 2 (thickness 4) set a MIN value of 0.5 mm, leaving all other limits as default.
- Close the variables spreadsheet.
- Close the surface data spreadsheet
- List the optimization variables by clicking on **Var:**

*VARIABLES									
VB	SN	CF	TYP	MIN	MAX	DAMPING	INCR	VALUE	
V 1	2	-	TH	0.100000	1.0000e+04	1.000000	0.000450	6.000000	
V 2	4	-	TH	0.500000	1.0000e+04	1.000000	0.000450	*	
V 3	5	-	TH	0.100000	1.0000e+04	1.000000	0.000450	6.000000	
V 4	7	-	TH	0.100000	1.0000e+04	1.000000	0.000450	42.950000	
V 5	1	-	CV			1.000000	2.222e-05	0.047059	
V 6	2	-	CV			1.000000	2.222e-05	-0.006303	
v 7	3	-	CV			1.000000	2.222e-05	-0.049383	
v 8	4	-	CV			1.000000	2.222e-05	0.051813	
V 9	6	-	CV			1.000000	2.222e-05	0.007080	
V 10	7	-	CV			1.000000	2.222e-05	-0.057854	

There is an asterisk against thickness 4 indicating that the current value of the variable (=0) violates the permitted range. As a result, the error function has increased.

• Click on the **Ope** in the text window.

appear with OSLO EDU they will not affect the result

MIN RMS ERROR: 3.772815

Optimization

• Two clicks on the **Ite** button gives the output shown below for this error function.

*ITE	RATE FULL 10		50 mm f/5.6 +/-15 deg UNITS: MM FOCAL LENGTH = 50.05 NA = 0.08992 DES: OSLO		
NBR	DAMPING	MIN ERROR	CON ERROR	PERCENT	3.07
CHG.					
0	1.0000e-08	3.772815			
1	1.0000e-05	2.061430		45.360945	
2	1.0000e-05	1.548952		24.860311	
3	1.0000e-05	1.326489		14.362182	
4	6.1580e-06	1.295507		2.335646	
5	2.3352e-06	1.292165		0.257970	
6	2.3352e-06	1.292093		0.005549	
7	0.000144	1.292093		2.4329e-05	FIELD POINTS
					ON-AXIS I+ Sx 10.62deg TA Sy 15deg TB Sy
*ITE	RATE FULL 10				Ideal o
NBR	DAMPING	MIN ERROR	CON ERROR	PERCENT	WAVELENGTHS 0.8 ** \(\lambda \left(\mu \) \(\text{Weight} \) \(\mathbb{Z} \)
CHG.			" λ(μm) Weight δ 1 0.598 1 2 0.496 0.4		
0	1.0000e-08	1.292093			3 0.656 0.6
1	1.0000e-08	1.292093			0.2
2	1.0000e-08	1.292093			
16			SPATIAL FREQUENCY (CYCLES/MM)		
II W	arning messag	ges about cie	MTF TYPE 50 mm 1/5.6 +/-15 deg		

significantly, although the final error function may differ slightly from the values given here..

The performance has improved considerably - the lowest MTF at 30 cycles/mm is 0.6 (for T section at .7 field). The prescription is:

*LENS	DATA						
50 mm	f/5.6 +/-15	deg					
SRF	RADIUS	THICKNESS	APERTURI	E RADIUS	GLASS	SPE	NOTE
OBJ		1.0000e+20	2.6795	∍+19	AIR		
1	25.838240	V 2.000000	7.593	L942 S	SK16	C	
2	-103.139037	V 6.389728	v 7.03	5229 S	AIR		
3	-14.888983	V 1.000000	3.888	3863 S	F4	C	
4	22.497814	V 0.499055	V 3.68	3790 S	AIR		
AST		3.457640	V 3.568	3729 AS	AIR	*	
6	161.514578	V 2.000000	5.108	3018 S	SK16	C	
7	-13.810731	V 44.869598	v 5.63	3273 S	AIR		
IMS			13.37	3470 S			

The focal length is 50.05 mm, an error of less than 0.1% so there is no need to increase the weight on operand 9.

Engineering aspects: edge thicknesses

As this lens is to be made by traditional means, a blank needs to be procured with sufficient extra diameter to allow each component to be centered by edging. The thicknesses of all the lenses need to be increased to improve manufacturing yield. Making an allowance of 3 mm on diameter beyond the largest clear aperture diameter for the mounting (with an extra 1 mm on the front lens to allow for weather-proofing), and a further 2 mm for the blank, the edge thickness of each blank should be about 1.5 mm minimum.

To calculate the edge thicknesses of the blanks for the two positive lenses:

- From the Lens menu header select Show Auxiliary Data > Edge Thickness.
- For component 1, enter surface **A** =1, surface **B** = 2. Enter the clear semi-diameter 7.6 mm plus 3 mm = 10.6 mm for the **y-height** at both surfaces:

```
*DISTANCE FROM SRFA 1 TO SRFB 2
                                                  ZSAGA
AT YHTA
               YHTB
                           XHTA
                                       XHTB
                                                              ZSAGB
  10,600000
             10.600000
                                                 2,274242
                                                           -0.546529
                                   GLOBAL DISTANCE
IS XDIS
               YDIS
                           ZDIS
                         -0.820771
                                      0.820771
```

The edge thickness given (ZDIS) is -0.82 mm, so the centre thickness for surface 1 needs to be increased by about 2.8 mm to reach the target of 1.5 mm.

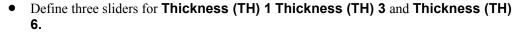
• Repeating for surface A = 6, B = 7, enter 5.6+2.5 = 8.1 mm for the **y-height** at both surfaces, otherwise type the command:

```
eth 6 7 8.1 8.1 0 0
```

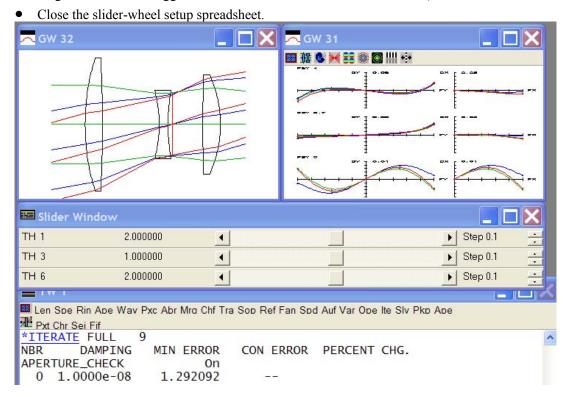
For this lens, the edge thickness of the blank (ZDIS) is -0.83 mm, so the centre thickness for surface 6 also needs to be increased by about 2.8 mm.

The centre thickness of the negative lens (surface 3) is too thin, and should also be increased to 1.5 mm.

Rather than making these directly in the spreadsheet, they will be used to illustrate the process whereby adjustments can be made with simultaneous optimisation.


Slider-wheels with concurrent optimization on MTF

Adjusting lens thicknesses


The facility provided by OSLO to carry out slider-wheel optimization on one or more parameters, with a simultaneous callback to optimization on other variables, is a powerful design tool. In this context, note that no parameter adjusted with the slider-wheel bars should be an optimization variable. In the example given here, the slider-wheels will be used to adjust the lens thicknesses 1 for surfaces 1, 3 and 6, while the optimization on the lens curvatures, air spaces and image distance will continue to correct performance during each adjustment.

- Close the surface data spreadsheet.
- Open the slider-wheel spreadsheet.

• Select • Enable sw_callback CCL function with Level = 9 (This must be in the range from 1 to 9 to trigger the lter function in the callback command.).

The text window, the slider-wheel bar and the two temporary slider-wheel windows, GW31 and GW32, should all be visible. The starting value of the error function is 1.292.

- Increase thickness 1 in steps of 0.1 until it reaches 4.0 giving an error function of 1.309.
- Increase thickness 3 in steps of 0.1 until it reaches 1.5. The error function will be 1.372
- Increase thickness 6 until it reaches 3.0; the error function becomes 1.408.
- Increase thickness 1 to 4.7 and thickness 6 to 4.7, the optimized error function will be 1.480.
- Close the slider wheels and list the lens.

*LENS	DATA								
50 mm	f/5.6 +/-15	deg							
SRF	RADIUS	TH	CKNESS		APERTURE RAI	DIUS	GLASS	SPE	NOTE
OBJ		1.00	000e+20		2.6795e+19		AIR		
1	29.485222	v 4	700000		8.263805	S	SK16	C	
2	-86.537346	V 6	.170610	v	6.982274	S	AIR		
3	-15.359048	v 1.	500000		3.947019	S	F4	C	
4	21.674799	v 0.	.498922	v	3.637632	S	AIR		
AST		2	.252805	v	3.522903	AS	AIR	*	
6	77.234402	V 4	700000		4.546980	S	SK16	C	
7	-14.489037	V 44	.432412	v	5.759546	S	AIR		
IMS					13.376786	S			

Now to check the edge thicknesses, calculate the edge thickness of the front lens blank at a radius of 8.3+3.0 = 11.3 mm:

```
eth 1 2 11.3 11.3 0 0
giving a value of 1.7 mm.
```

Also find the edge thickness of the third lens blank at a radius of 5.8+2.5 = 8.3 mm:

```
eth 6 7 8.3 8.3 0 0
which gives 1.6 mm.
```

respectively.

These are both above the 1.5 mm which is required. For the diagram which shows the blank sizes, the barrel semi-diameters have been rounded upwards to 10 mm, 5.5 mm and 7.5 mm

Engineering aspects: ambiguity avoidance

It is extremely hard to tell which of the two surfaces of a nearly equi-concave lens is the steepest. To avoid assembly errors, we will investigate the effect of making the second lens truly equi-concave.

- Make the second element equi-concave. Click on the surface 4 gray RADIUS button and select Minus curvature pickup (P)... with Pickup source surface = 3 Pickup constant = 0, Pickup multiplir = 1.0.
- Reoptimise. The error function is 1.640. This increase is acceptable.

*LENS	DATA								
50mm	f/5.6 +/-15 de	eg							
SRF	RADIUS		THICKNESS		APERTURE RAI	DIUS	GLASS	SPE	NOTE
OBJ			1.0000e+20		2.6795e+19		AIR		
1	26.647695	v	4.700000		8.681421	s	SK16	С	
2	-361.254520	v	7.067320	v	7.317984	s	AIR		
3	-18.435016	17	1.500000		3.907032	ď	F4	C	
4	18.435016	-		v	3.580456	-	AIR	•	
			0 200504		2 464410			*	
AST			2.398524	٧	3.464412	AS	AIR	*	
6	42.567801	v	4.700000		4.577052	s	SK16	C	
7	-16.089048	V	43.427580	v	5.729062	S	AIR		
IMS					13.383518	s			

Engineering aspects: testplate fitting

Select the Rodenstock test glass file: Under the File menu header, select Preferences
 Set preference > Test_glass_file and in the command line enter rodenstock.tgl.

This refers to an ASCII file **rodenstock.tgl** in the directory **OSLO/Prm64/bin/Imo/** which contains 1446 test glass values. Test glass files for other manufacturers are also available, and the user may create others in the same format if desired.

- Open the surface data spreadsheet.
- For surface 7 (the shortest radius at 16.09 mm) remove the variable curvature (change to **Direct specification**).
- Hold down the **shift** key and **left-click** the mouse twice on the radius. A value 16.0766 will appear as the nearest test glass, with a black box around it.
- Click on the green tick to accept this (or **shift-left-click** to restore the nominal radius). The letter **T** appears next to the fitted radius.
- Press **Ite** to optimize the remaining variables.
 - Repeat this sequence for surface 3 remove the variable, fit the closest test glass, and optimise remaining variables.
 - Repeat this sequence for surface 6 and then again for surface 2.
 - Click on **Len** to list the design. Note the T which appears against each radius which has bees fitted to a test glass.

106 Optimization Chapter 9

*LENS	DATA								
50 mm	f/5.6 +/-15	deg							
SRF	RADIUS		THICKNESS		APERTURE RAI	DIUS	GLASS	SPE	NOTE
OBJ			1.0000e+20		2.6795e+19		AIR		
1	26.699200	T	4.700000		8.692011	S	SK16	C	
2	-375.820000	T	7.098400	v	7.328991	S	AIR		
3	-18.438800	T	1.500000		3.907388	S	F4	C	
4	18.438800	P	0.499794	v	3.581367	S	AIR		
AST			2.384983	v	3.465615	AS	AIR	*	
6	42.322100	T	4.700000		4.572836	S	SK16	C	
7	-16.076600	T	43.429946	v	5.724953	S	AIR		
IMS					13.380875	S			

Click on Ope in the text window.

MIN RMS ERROR: 1.641164

The error function has risen slightly.

Rounding air spaces

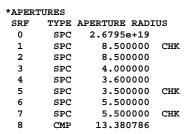
Round the air spaces to avoid giving the impression that they are subject to tight tolerances:

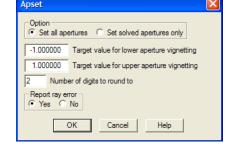
- Change thickness 2 to 7.1, delete the variable and re-optimize.
- Change thickness 4 to 0.5, delete the variable and re-optimize.
- Change thickness 5 to **2.4**, delete the variable and re-optimize on the one remaining variable, the focus.
- Enter the command: ope erf

The error function has risen slightly:

MIN RMS ERROR: 1.645251

Adjusting clear apertures

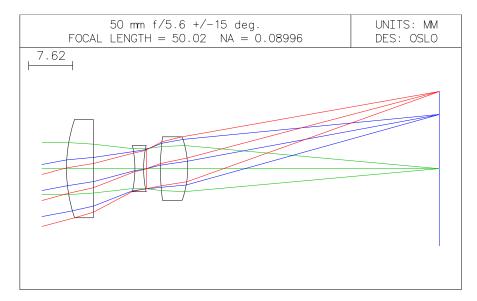

• Close the variables spreadsheet and the lens data spreadsheet.


• Under the Optimize menu header, select Support routines > Vignetting > Set

apertures and in the dialog box change the

number of digits to 2.

• Click on **OK**.



- Remove the **Checked aperture (K)** indications from surfaces 1, 5 and 7.
- Change the clear aperture surface 4 to 4.0 mm (as this lens is reversible).

- Remove the **Pickup (P)** from the radius on surface 4, change all the other radii to **Direct specification**, but leave the variable on the back focal distance (thickness 7).
- List the lens:

50 mm	f/5.6 +/-15	deg.				
SRF	RADIUS	THICKNESS	APERTURE RADIUS	GLASS	SPE	NOTE
OBJ		1.0000e+20	2.6795e+19	AIR		
1	26.699200	4.700000	8.500000	SK16	C	
2	-375.820000	7.100000	8.500000	AIR		
3	-18.438800	1.500000	4.000000	F4	С	
4	18.438800	0.500000	4.000000	AIR	_	
AST		2.400000	3.500000 A	AIR	*	
6	42.322100	4.700000	5.500000	SK16	C	
7	-16.076600	43.397798 V	5.500000	AIR		
IMS			13.366656 s		*	

This completes the design of this lens. The next chapter will start from this point as the basis of the tolerance calculation exercise.

Chapter 10 - Tolerances and drawings

50 mm f/5.6 objective: specification

For the lens which is the final design of the triplet describes in the previous section, the task is to define the surface and component tolerances which, based on root-sum-of-squares statistics, give an MTF which does not fall below 0.1 at 30 cycles/mm at any of the three field points. The assumption will be made that in production there will be a uniform distribution of errors within the tolerance band, and that a focus adjustment will be carried out on assembly.

This will be accomplished using a CCL command which assesses the MTF at 30 cycles/mm in both azimuths at 5 field points across the field - with values of FBY of 0.0, ± 0.7 and ± 1.0 .

Defining the tolerance error function: "opcb_dmtf"

The CCL routine below will calculate the MTF in 2 azimuths at 5 field points, 10 values in all. It will then identify the worst (i.e. lowest) of these, and subtract it from the diffraction limited MTF at the same frequency. The error function consists of a single operand, having this value.

Subtracting the lowest MTF from the ideal ensures that, as in all optimization operands, the system with the lowest value of the error function is the best one.

The routine here is a "callback" - that is to say, it is evaluated whenever the error function is calculated. It places a single value into the real array ocm[1]. This value is then called using the string **OCM1** as the definition of the operand.

Open the text editor and create a new file:

```
// Written by [your name] [Date]
cmd opcb_dmtf(void)
// hlp:
          <P>Callback for DMTF (degradation in MTF) optimization.
          OCM1 is max reduction in MTF below ideal MTF at 5 field
// hlp:
// hlp:
          points for one spatial frequency. Both X & Y are included
// hlp:
          on axis, as well as field height FBY both +ve and -ve.</P>
       static double mtfs[10],diff_lim,mtf_min;
       static double sf=30.0; //spatial frequency
       stp outp off;
       sbr k 1;//scrolls spread sheet buffer to preserve contents
               :(0,0,0);
               mtf(tfr,chr,y,sf,sf,0);
               mtf(tfr,chr,x,sf,sf,0);
               sop(0.7,0,0);
               mtf(tfr,chr,y,sf,sf,0);
               mtf(tfr,chr,x,sf,sf,0);
               sop(-0.7,0,0);
               mtf(tfr,chr,y,sf,sf,0);
               mtf(tfr,chr,x,sf,sf,0);
```

```
sop(1.0.0):
       mtf(tfr,chr,y,sf,sf,0);
       mtf(tfr,chr,x,sf,sf,0);
       sop(-1,0,0);
       mtf(tfr,chr,y,sf,sf,0);
       mtf(tfr,chr,x,sf,sf,0);
       diff_lim=d5;
       if(diff_lim==0) cclabort("Diff limited MTF zero","opcb_dmtf");
       mtfs[0]=b5;// Ax T
mtfs[1]=b8;// AX S
       mtfs[2]=b14;// +7 T
       mtfs[3]=b17;// +7 S
       mtfs[4]=b23;// -7 T
       mtfs[5]=b26;// -7 S
       mtfs[6]=b32;// +1 T
       mtfs[7]=b35;// +1 S
       mtfs[8]=b41;// -1 T
       mtfs[9]=b44;// -1 S
       mtf_min=1.0;
       for(i=0;i<10;i++)if(mtfs[i]<mtf_min)mtf_min=mtfs[i];</pre>
       ocm[1]=diff_lim-mtf_min;// DMTF: MAX FALL BELOW DIFFRACTION LIMIT
sbr -k 0;
stp outp on;
```

• Save the command in /private/ccl/ with the name optim_dmtf.ccl, and check correct compilation.

*CCL COMPILATION MESSAGES:

No errors detected

• Open the optimization conditions spreadsheet.

- Change the entry for the optimization callback, Command for CCL/SCP operands: opcb_dmtf
- On the bottom line, under Error function value, select

 Root-mean-square (RMS).
- Close the optimization conditions spreadsheet.
 - Enter the command line ope new; end to delete the existing operand list.
- Open the operands data editor spreadsheet.
- Fill in the name and definition as in the following table:

OP	MODE	WGT	NAME	DEFINITION
1	MIN	1.000000	DMTF at 30	OCM1

• Close the operands spreadsheet and list the operands with **Ope**

```
OP MODE WGT NAME VALUE %CNTRB DEFINITION O 1 M 1.000000 DMTF at 30 0.408358 100.00 OCM1 MIN RMS ERROR: 0.408358
```

Since there is only one operand in the error function, the value of the RMS minimization error is the actual value of DMTF, the degradation in MTF.

Defining the compensator

To enable the widest possible tolerances to be assigned to the lens, one or more "compensators" can be defined. These represent the adjustments made during assembly which can partly compensate the errors in the individual components. The most common compensator is, of course, the focus, and that is the only compensator used in this example.

To define a compensator, the parameter concerned must be defined as an optimization variable.

- In the text window click on **Var.**
- Confirm that thickness 7 is variable, and is the only variable.

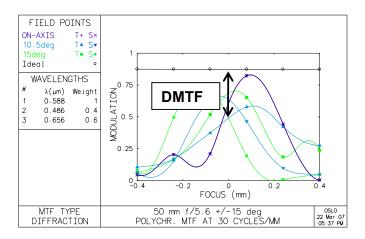
Before commencing the calculation of tolerances, the compensator must be set to the optimum position for the nominal design.

Optimizing on the compensator

• To find the best focus, just optimize with **Ite** and click on **Var**

```
*ITERATE FULL 10
       DAMPING
                 MIN ERROR
                              CON ERROR PERCENT CHG.
NBR
  0
    1.0000e-08
                   0.408358
       6.158000
                   0.367641
                                           9.970860
      61.580000
                   0.361620
                                           1.637656
    379.209640
                   0.360640
                                           0.271130
  3
    379.209640
  4
                   0.360640
  5
    379.209640
                   0.360640
*VARIABLES
             TYP
                        MIN
                                    MAX
                                               DAMPING
                                                             INCR
                                                                         VALUE
VB
                      0.100000 1.0000e+04
V 1
                                              1.000000
                                                           0.000450
                                                                       43.385935
           - TH
```

To confirm the choice of focal plane, plot the through-focus MTF at 30 cycles/mm:


• Click on the icon and accepting all defaults.

- Right click in the graphics window, and select Recalculate with new parameters...
 - Enter Frequency 30 cycles/mm.

The curves show that the ideal focal plane has been chosen.

The diagram also illustrates the significance of the quantity DMTF. It is the largest drop below the diffraction limit at any of the five field points, with assessment in both sagittal and tangential directions (including on axis). This error function has been chosen so that asymmetric tolerances can be included in

the calculation.

Under the Evaluate menu header, select Transfer function > Print/Plot OTF and
in the dialog box select: Monochromatic, Print function, with Maximum
frequency = 30 line pairs per mm.

In this case the diffraction limit MTF at 30 cycles/mm is 0.86. At the best focus, the nominal value of the worst MTF at 30 cycles/mm is 0.49, giving a value of DMTF for the nominal system of 0.36. If the MTF must remain everywhere above 0.1, the value of DMTF must not increase to more than 0.76.

Calculating decenter tolerances

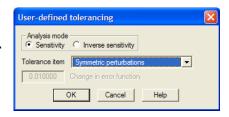
As an example we will calculate the effect of decentering the second lens by the minimum amount one can expect from traditional mounting methods:

- Open the surface data spread sheet.
- Under **Special** for surface 3, select **Coordinates (C)**.
- Enter .075 mm for **DCY**, and under Use base coordinates for returns to this surface: select **Yes**.
- Under Special for surface 4, select Coordinates (C).
- Under Coordinate return: select **Yes** and under Return to surface: enter **3**
- Click on **Ope** and find the new DMTF value:

MIN RMS ERROR: 0.612975

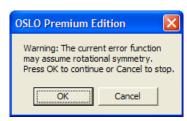
So DMTF has increased from 0.36 to 0.61, an increase of 0.25. This has used more than half the entire tolerance budget of 0.40 on one error, so clearly a specialized mounting method (such as laser centering in the mount) will need to be used to meet the performance target. That being the case, we will assume that all the component decenter tolerances can be regarded as zero, and calculate the budget for the remaining errors.

Checking tolerance entries


The default tolerance values assigned to each parameter are the ISO10110 values. Because there are two successive air spaces (4 and 5), the tolerance on the first one can be removed.

Click on the Edit Surface Tolerances icon, or select from the menu header
 Tolerance > Update tolerance data > Surface.

- For surface 4, set **TH TOL** (thickness tolerance) to **0.0**
- Close the surface tolerances data editor.


Symmetrical tolerances surface calculation

 A warning message comes up. The error function does not assume rotational symmetry, so click on **OK**.

The sensitivity analysis (which may take one or two minutes) lists 6 power errors, 3 element thicknesses, 2 air spaces, 3 indices and 3 V-values, 17 symmetrical contributions in all. The summary is:

WORST CASE CHANGE STANDARD DEVIATION	UNCOMPENSATED 6.019989	COMPENSATED 3.022531
RSS	1.659396	1.056369
UNIFORM	0.958053	0.609895
GAUSSIAN	0.729824	0.464604

The change in the error function, with focus compensation, for a uniform distribution of errors within the tolerance band is 0.61 is an indication that the standard tolerances are not acceptable.

If we allocate 0.33 of the budget of 0.40 to the symmetrical tolerances, then each tolerance will be allowed $0.33/\sqrt{17} = 0.08$ MTF degradation.

 From the menu header select Tolerance > User-defined Tolerancing and select Inverse sensitivity and Symmetric perturbations, enter 0.08 for Change in error function.

```
*INVERSE SENSITIVITY ANALYSIS
ERROR FUNCTION FOR NOMINAL SYSTEM: 0.360640
ALLOWED CHANGE IN ERROR FUNCTION: 0.080000

POWER ERROR TOLERANCE
ALLOWED TOLERANCE
SRF UNCOMPENSATED COMPENSATED
1 4.204420 109.362285
2 4.416476 72.560814
```

SRF	UNCOMPENSATED	COMPENSATE
1	4.204420	109.362285
2	4.416476	72.560814
3	1.941512	1.807345
4	1.910946	1.747543
6	3.571230	3.882230
7	3.599738	27.941716

These tolerances must be tightened from the ISO10110 values of 10, 10, 5, 5, 10 and 10 fringes to 5 fringes throughout.

ELEMENT THICKNESS TOLERANCE ALLOWED TOLERANCE SRF UNCOMPENSATED COMPENSATED 1 0.074299 0.096090 3 0.079866 0.246151 6 0.109412 0.337794

The first one needs to be changed to from the ISO10110 value of 0.2 to 0.1 mm.

AIR	SPACE TOLERANCE	
	ALLOWED	TOLERANCE
SRF	UNCOMPENSATED	COMPENSATED
2	0.079453	0.053990
_		

5 0.035223 0.036388 These must be tightened to 0.05 mm.

INDEX	OF REFRACTION TO	LERANCE
	ALLOWED	TOLERANCE
SRF	UNCOMPENSATED	COMPENSATED
1	0.000460	0.006810
3	0.000381	0.000346
6	0.000376	0.000342

These must all be tightened from .001 to 0.0006 (note that the glass type for lens 1 and for lens 3 are the same, so only one standard of glass need be procured).

ABBE	V-NUMBER ERROR	(IN %) TOLERANCE
	ALLO	WED TO	LERANCE
SRF	UNCOMPENSAT	ED	COMPENSATED
1	5.230509		20.247082
3	3.291042		12.443420
6	4.223386		14.964191

These can stay at 0.8%.

Updating symmetrical surface tolerances

Click on the Edit Surface Tolerances icon, or select from the menu header
 Tolerance > Update tolerance data > Surface.

- Change the tolerances on symmetric form error (**PWR FR**) at all surfaces to 5
- Change the tolerances on thickness (**TH TOL**) at surfaces 2 and 5 to **0.05**.
- Change the tolerance on thickness (**TH TOL**) at surfaces 1 to **0.1**
- Change the tolerances on index (**RN TOL**) at surfaces 1 3 and 6 to **0.0006**.
- Close the surface tolerances data editor.
- Repeat the sensitivity calculation for symmetrical tolerances:

STATISTICAL S	UMMARY					
		UNCOMPENSATED	COMPENSATED			
WORST CASE C	HANGE	4.548071	0.744409			
STANDARD DEV	TATION					
RSS		1.271472	0.472209			
UNIFORM		0.734085	0.272630	2630		
GAUSSIAN	Г	0.559210	0.207684			
COMPENSATOR	STATISTIC	S				
COMP	MEAN	STD DEV	MAX	RSS		
TH 7	-0.011420	0.099581	0.356100	0.483578		

• The degradation of 0.27 (less than the 0.33 allowed for) leaves a balance of 0.13 for the asymmetric tolerances.

Asymmetric tolerances surface calculation

Since the full asymmetrical sensitivity analysis cannot be undertaken with OSLO EDU, the relevant elements of the sensitivity analysis will be calculated separately.

There are only two surface errors to be considered. These consist of 6 surface irregularity errors, and 6 surface tilt errors (TLA only), 12 in all. If we allocate the remaining 0.13 of MTF degradation (that is, the budget of 0.4 minus the 0.27 taken up by symmetrical tolerances) to these 12 tolerances, then each contribution is $0.13/\sqrt{12} = 0.038$.

- Remove the variable from thickness 7 focus cannot compensate for asymmetrical errors.
- Remove the variable from thickness 7, since focus cannot compensate for asymmetrical errors.
- From the menu header select Tolerance > User-defined Tolerancing and select Inverse sensitivity and Irregularity fringes, enter 0.038 for Change in error function.

```
*INVERSE SENSITIVITY ANALYSIS
ERROR FUNCTION FOR NOMINAL SYSTEM:
                                       0.360640
ALLOWED CHANGE IN ERROR FUNCTION:
                                       0.038000
IRREGULARITY ERROR TOLERANCE
      ALLOWED TOLERANCE
SRF
        UNCOMPENSATED
 1
           2.097225
 2
           2.261429
           0.816355
 3
 4
           0.818204
 6
           1.263006
           1.188189
```

The tolerance on both surfaces of the last lens needs to be changed to from the ISO10110 value of 2 fringes to 1 fringe.

 From the menu header select Tolerance > User-defined Tolerancing and select Inverse sensitivity and Surface tilt tolerance (TLA), and again enter 0.038 for the Change in error function.

```
*INVERSE SENSITIVITY ANALYSIS
ERROR FUNCTION FOR NOMINAL SYSTEM:
                                        0.360640
ALLOWED CHANGE IN ERROR FUNCTION:
                                       0.038000
SURFACE TILT TOLERANCE (TLA)
       ALLOWED TOLERANCE
 SRF
        UNCOMPENSATED
 1
           0.139481
 2
           0.108784
 3
           0.145052
           0.161710
 6
           0.153277
           0.110764
```

All these tilt tolerances must be changed to 0.08 degrees (5 minutes).

Updating asymmetric surface tolerances

• Click on the Edit Surface Tolerances icon, or select from the menu header **Tolerance > Update tolerance data > Surface.**

- Change the tolerances on irregularity i.e. asymmetric form error **IRR FR** at surfaces 6 and 7 to 1.0
- Change the tolerances on tilt (**TA TOL**) for all refracting surfaces to **0.1**
- Close the surface tolerances data editor.

Updating asymmetric component tolerances

The decision has already been made to center the components precisely.

- Select from the menu header **Tolerance > Update tolerance data > Component.**
- Change the tolerances on centration (**DCY**) and tilt (**ALPHA**) to **0.0**

Asymmetric tolerances calculation

From the menu header select Tolerance > User-defined Tolerancing and select
Sensitivity and Asymmetric perturbations, or type the command: tsn asy.
Only the summary data is given here.

STATISTICAL SUMMARY UNCOMPENSATED 0.946050 WORST CASE CHANGE STANDARD DEVIATION 0.308895 RSS UNIFORM 0.178341 GAUSSIAN 0.135856

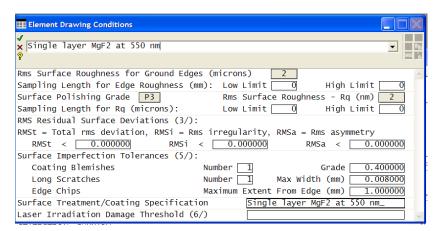
The degradation of 0.18 is a little larger than the 0.13 budget for the asymmetric tolerances, but note that all tolerance calculations subject to the approximations of

Tolerance data listing

From the **Lens** menu header select **Show tolerance data > Surface**.

	FACE TOLER m f/5.6 +/									
	RADIUS	RD TOL	FRI	NGES T	HICKNESS	TH TOL		RN TOL	DECEN	TILT
SRF	CON CNST	CC TOL	PWR	IRR	TLC TOL	DZ TOL	GLASS	V TOL	Y/X	A/B
1	26.6992		5.00	2.00	4.7000	0.1000	SK16	0.0006		0.0800
								0.8000		0.0800
2 -	-375.8200		5.00	2.00	7.1000	0.0500	AIR			0.0800
										0.0800
3	-18.4388		5.00	1.00	1.5000	0.1000	F4	0.0006		0.0800
								0.8000		0.0800
4	18.4388		5.00	1.00	0.5000		AIR			0.0800
_				_,,,						0.0800
 5					2.4000	0 0500	AIR			
3					2.4000		AIK			
6	42.3221		5.00	1.00	4.7000	0.2000	SK16	0.0006		0.0800
								0.8000		0.0800
7	-16.0766		5.00	1.00	43.3859		AIR			0.0800
-										0.0800
8										
FRI	NGE WAVELE	NGTH:	0.54	6070						

Fringes measured over clear aperture of surface unless indicated. Tilt tolerances are specified in degrees.

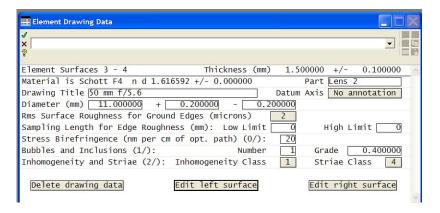

- From the **Lens** menu header select **Show tolerance data > Component**.
- All values in this table should be zero.

ISO 10110 component drawing

The middle element of the triplet objective will be used to demonstrate this facility.

Setting element drawing defaults

- From the menu header select Lens > Lens Drawing > Element drawing conditions or type the command: edd
- Set RMS surface roughness for ground edges R_q = 2 (microns) medium.
- Set RMS surface roughness R_q = 2nm (medium)
- Set Surface polishing grade to P3.
- Set Coating blemishes to 1 Grade 0.4. (MIL 80-50 equivalent)
- Set Long scratches to 1 Width 0.008 mm (MIL 80-50 equivalent)
- Set Edge chips: Maximum extent from edge to 1 mm.
- Define Coating specification as Single layer MgF2 550 nm.

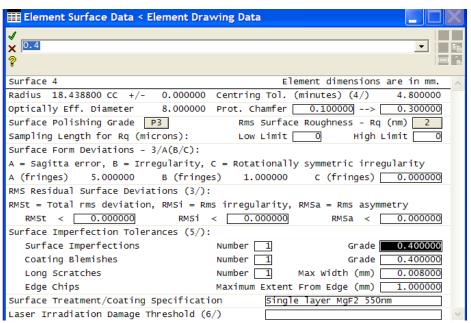


Close the spreadsheet.

Setting element material properties

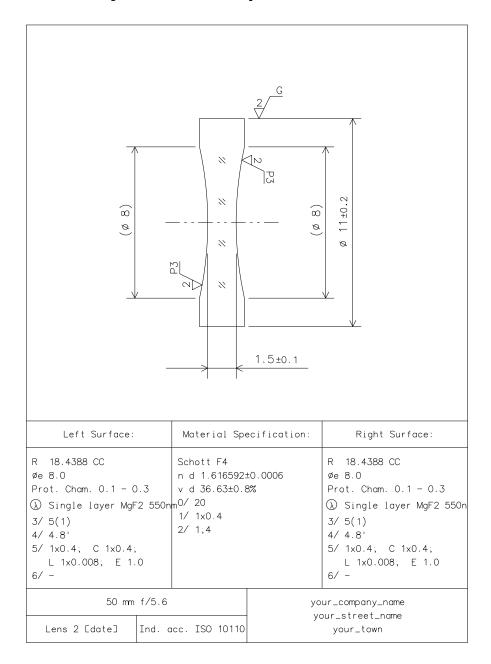
- From the menu header select Lens > Lens Drawing > Element
- For Left surface of element select 3
- Fill in:
- Part Lens 2 [date]
- Drawing title 50 mm f/5.6
- Diameter 11 mm +0.2/-0.2

- Stress birefringence (0/): 20
- Bubbles and inclusions (1/) Number 1 Grade 0.4
- Striae Class 4.


Setting element surface properties

- Click on Edit left surface.
- Leave most entries unchanged but fill in:
 - Surface imperfections Number 1 Grade 0.4

- Click on the green tick to close the spreadsheet.
- Click on Edit right surface.
- Again fill in:
 - Surface imperfections Number 1 Grade 0.4
- Click on the green tick twice and the drawing appears.



Element drawing

The message appears in the message area:

Element drawing is best viewed in a "portrait window" format.

Appendix 1 119

Appendix 1 - Index of lens data commands

This table gives an alphabetic listing of the principal commands used in lens data input, together with the page numbers in the OSLO Program Reference Issue 6.3 (Autumn 2004 edition). The letter in the second column is the label shown on the gray button in the surface data spreadsheet when the relevant parameter is set. Note that not all of these commands are available in OSLO-EDU.

Command		Explanation	Page	drw		srf drawing	63
ach	F	array chan	65	4		ent beam rad	28,
ad	Α	aspheric	73	ebr	_		121
ae	Α	aspheric	73	ec	S	edge slv	47
af	Α	aspheric	73	eik	Е	eikonal srf	108
afo		afocal mode	117	end		end data	
ag	Α	aspheric	73	ерху		ray aiming	119
air		medium	53	esd	E	eikonal del	108
al	S	aplanatic slv	42	fno		F number	121
alc	S	aplanatic slv	42	frn	F	Fresnel	62
amo		abn mode	118	gc	С	global coord	69
ang		field angle	122	gcs	С	glob ref srf	118
ap		aperture	49	gdt	G	gradient index	97
apck		ap checking	117	gih		image height	122
apn	Х	special ap	50	gla		medium	54
ary	F	lens array	64	gor	D	grating order	85
as0, as1, <i>etc</i> .	Α	aspheric	75	grd	G	gradium	100
asi	F	alt srf intersec	62	grp		group	34
ası	Α	aperture stop	27,	gsp	D	grating spc	85
ast			50 [°]	hor	D	hologram order	86
asp	Α	aspheric	73	idd	Z	zernike	91
ben	С	tilt & bend	68	ims		image srf	27
bry		birefringent	57	ins		srf insert	32
cak	В	crystal axis	57	itf	I	interferogram	112
cal	В	crystal axis	57	inv		srf invert	33
cam	В	crystal axis	57	jsd	Z	polarisation	107
CC	Α	conic const	72	kco	D	kinoform order	89
cfg		oonfiguration	20	kdp	D	kinoform depth	89
cns	Α	cone	79	ldp	F	srf dwg pen	64
csd		slv delete	41	len		begin data	
cslv		slv in alt cfgs	118	lid		lens identifier	20
ctf	Т	test glass cv	45	Ime		module end	35
CV		curvature	40	lmo		module begin	35
CVX	Α	toric	72	lse		spreadsheet	17
dcx	С	decentre	67	mco	М	coating	105
dcy	С	decentre	67	mer		insert lens	40
dcz	С	decentre	67			insert catalog	
del		srf delete	32	merge_catalog	_	lens	37
des		desgr name	118	nac	Q	non-sequential	109
dlid,dlfd,dlha,dlva,		lens and ray	228	nao		obj space NA	28, 127
dlfs,dlls,dlap,dlrs,		drawing con-	to	nau		im space NA	28,
dlnr etc	D	trol diffractive	245	nap			121
doe	ט	uiiiauiive	85				

120 Appendix 1

					-	-pp	
not	Ν	surface note	61	ung		ungroup	36
nxt		next srf		uni		units	117
		object height	28,	usd	U	user sag	110
obh		OPD in waves	122			user trace	95,
opdw		perfect lens	118	usr	U	usor pickup	110
pfl	L		70	utp	P	user pickup Wood lens	47
pfm	L S	perfect lens	70	wod	G		99
pi	S	marg ray solve	41	wrsp		ref sph posn	117
pic	P	chief ray solve	42 44,	wv1		wavelengths	26, 124
	Р	pickup	44, 47,	***		spectral wts	26,
pk			54	ww1		•	124
pre		sys pressure	120	zoe	Α	Zernike	80
pu	S	cv solve	41	zrr	Α	Zernike	91
puc	S	cv solve	42	zrx	Α	Zernike	91
puk	S	ax ray ang	121	zrxr	Α	Zernike axis	118
ру	S	th solve	46				
рус	S	th solve	46				
F) -		polarization ray	56,				
pzrt		trace	120				
raim		ray aiming	117				
rco	С	coord return	68				
rd		radius	40				
rdt	Т	test glass rd	45				
rev		srf reverse	33				
rfh		refl & hatch	53				
rfl		reflection	53				
rfs	R	ref srf	50				
rod	F	extrude	63				
rtf	Т	testglass fit	45				
sasd		astig distance	120				
scf		setup cfg	21				
scl		scale srfs	40				
sdad		ap divisions	123				
sdaz		apodisation	123				
oddz		diffraction	.20				
sdde		efficiency	120				
sdis		im space spd	120				
skp	F	skip	62				
sle		scale lens	40				
sno1, sno2, etc		system notes	126				
spl	S	spline	82				
	F	thermal expans					
tce		coefficient	120				
tem		sys temp	120				
th	_	thickness	46				
tir	F	tir srf	63				
tla	С	tilt angle	67				
tlb	С	tilt angle	67				
	_						
tlc	С	tilt angle	67				
tlc tox		tilt offset	67 67				
	С	tilt offset tilt offset					
tox	C C	tilt offset	67				

In this table, S refers to solves, C refers to tilt/decenter coordinates, and A refers to aspheric surfaces. Other letters are the flags used in the spreadsheet. A complete listing of the lens data commands is on pages 508 - 514 of the OSLO Program Reference. These commands may be used:

1. In the command window, explicitly, as part of an update process:

```
len upd
gto 2
nxt
th 1.0
end
```

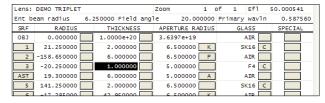
Note the use of **gto**, **nxt**, **end**. A semicolon has the same effect as **nxt**.

2. As part of a CCL command:

```
{
len upd;
gto(3);
th(1.0);
end;
}
```

Note the semicolons at the end of each line.

3. In the command window, as a self-contained command:


```
th 3 1.0
```

This is called "global editing"

4. As part of a lens file:

NXT //SRF 3 ... TH 1.0

5. Implicitly, when the spreadsheet is updated, as shown here.

Appendix 2 - Graphics reference

Alphabetical index

KEY TO COMMAND REFERENCE (in order of preference)

Standard tools Accessed via graphics window toolbar using the icon shown

Advanced Analysis Accessed via main window toolbar using the icon shown

Tools > Special Accessed via main window menu headers

grindex CCL command accessed via the command line

	<u> </u>		OSLO	
Function	Command Reference	Icon	version	Grid
2D-waveguide coupling	Tools > Special > 2D	-	₽m	e10
Astigmatism - S & T over field	Evaluate > Ray Fans	-	All	d11
Axial chromatic focal shift	Ray Analysis	S. Contraction of the second	All	h2
CCL example - 4 graphs	Tools > Plotting	1	All	h9
CCL example - contour	Tools > Plotting	-	All	b10
CCL example - map	Tools > Plotting	-	All	c10
CCL example - pen colours	Tools > Plotting	-	All	d10
CCL example - XY graph	Tools > Plotting	-	All	d10
Distortion grid plot	Ray Analysis	囲	All	b3
Distortion at all wavelengths	Evaluate > Ray Fans	-	All	e11
Doublet - slider-wheel design	Tools > Demos	-	All	h1-
Draw system 2D	Lens Drawing	€X	All	a1
Draw system 2D	Standard tools	₩	All	a1
Draw system 3D shaded solid	Lens Drawing		All	d1
Draw system 3D solid	Lens Drawing	Ø	All	c1
Draw system 3D variable view	Lens Drawing	4	All	e1
Draw system 3D wire-frame	Lens Drawing	9	All	b1
Draw system 3D wire-frame	Standard tools		All	b1
Draw system - conditions	Lens Drawing	日本日	All	
Draw system - zoom lens	Lens Drawing	0 I	5 _{td}	h1
Element drawing	Lens Drawing	♦	All	a2
Encircled energy - diffraction	Energy		All	b7
Encircled energy - geometrical	Energy	$\overline{\circ}$	All	e7
Ensquared energy - diffraction	Energy		All	c7
Ensquared energy - geometrical	Energy	4	All	f7
Extended source image	Extended Source	0	All	e9
Footprint - one field point	Spot Diagram		All	e4
Footprint profile - all field points	Spot Diagram	ZS.	All	f4
Gaussian beam movie	Tools > Demos	-	All	g10

Appendix 2 123

Trans.				
Ghost image movie	Spot Diagram	Ĭ,	Lit	g4
Glass catalogue n-V map	Lens >Glass Catalog	-	All	a9
GRIN lens - slider-wheel design	Tools > Demos	-	Lit	b11
GRIN axial index	grindex	-	All	-
Internal transmittance of glass	internal_trans	-	All	-
Incidence angle statistics	iangstat	-	All	h11
Lateral chromatic aberration	Ray analysis		All	a3
Lateral colour (pri & sec)	Evaluate >Ray Fans	-	All	-
Longitudinal aberration	Evaluate >Ray Fans	-	All	c11
LSF/KED - diffraction calc	Energy		All	d7
LSF/KED - geometrical calc	Energy		All	g 7
MTF over field - 3 frequencies	MTF	\approx	All	d6
MTF - one field point	MTF		All	a6
MTF square wave - 1 field point	MTF		All	e6
MTF - thru frequency report	MTF		All	h5
MTF - thru frequency report	Standard tools		All	h5
MTF and spot size thru focus	MTF	1	All	f6
MTF FFT one field point	MTF	144	P _{rm}	b6
MTF thru focus - one field point	MTF)	All	h6
MTF thru focus across field	MTF		All	a7
MTF thru focus report	MTF	+ +	All	g6
MTF thru focus report	Standard tools	* *	All	g6
OPD - 2D field points	Ray Analysis	2D	5 _{td}	g2
OPD - one field point	Ray Analysis	42	All	f2
OPD contour - one field point	Wavefront	٩	All	f3
OPD interferogram	Wavefront	3	All	g3
OPD map - 2D field points	Wavefront	2 0	5 _{td}	d3
OPD map - one field point	Wavefront	(1)	All	e3
OPD map/contour report	Wavefront	Ĭ	All	c3
OPD map/contour report	Standard tools	==	All	c3
OPD report	Ray Analysis	Ħ	All	e2
Optimization ray set	Spot Diagram		5 td	h4
Partial coherence - bar image	Advanced Analysis	┯	All	g9
Photometric plot	ridemo	-	All	f11
Pixellated image	Extended Sources		All	f9
Polarisation map	Polarization	880	₽m	b8
PSF - 2D contour lines	Evaluate > Spread fn	-	₽m	b9
PSF - 2D field points	PSF	2 0	5 _{td}	b 5
PSF - contour	PSF	3 €	All	c5
PSF - FFT - contour	PSF	je.	All	e5
PSF - FFT - one field point	PSF	()	All	f5
-				

124 Appendix 2

147			ואי	JCIIGIA
PSF - one field point	PSF	()	All	d5
PSF - section	PSF		All	g5
PSF report	PSF	*	All	a5
PSF report	Standard tools		All	a5
PTF - thru frequency	MTF	×	All	с6
Public lens database	File> Lens Database	-	All	h8
Ray analysis - 2D field points	Ray Analysis	- 2D	5 _{td}	d2
Ray analysis - one field point	Ray Analysis	7	All	c2
Ray analysis report	Ray Analysis	> €	All	b2
Ray analysis report	Standard tools	> €	All	b2
Ray analysis SIGMA format	repsig	-	All	g11
Ray bundles 2D	Lens Drawing	φĒ	All	f1
Ray bundles 3D	Lens Drawing	8	All	g1
Ray bundles movie	fieldscan	-	5 _{td}	h1
RMS spot size & RMS OPD	Spot Diagram	×	All	d4
Seidel aberration demo	Tools > Demos > Seidel	-	All	f10
Slider-wheel design	Standard Tools	⊕	All	с9
Spot diagram - 2D field points	Spot Diagram	20	5 _{td}	a4
Spot diagram - one field point	Spot Diagram	-	All	b4
Spot diagram - recipolar	Spot Diagram		All	c4
Spot diagram report	Spot Diagram		All	h3
Spot diagram report	Standard tools		All	h3
Surface reflected phase	Polarization	Ą	₽m	f8
Surface reflectivity	Polarization	U	P _{rm}	d8
Surface transmission	Polarization	4	₽m	e8
Surface transmitted phase	Polarization	1	₽m	g8
Thin film uniformity	Polarization		P _{rm}	c8
Tolerances - Monte Carlo	Tolerances	$\overline{\mathbb{S}}$	P _{rm}	
Triplet - slider-wheel design	Tools > Demos > Triplet	-	All	a11
y-ybar diagram	Optimize > Support	-	All	d9
Zoom lens drawing	Lens Drawing	0 I	5 _{td}	h1
Zoom lens drawing	Zoom	0 I	5 _{td}	h1
Zoom lens report	Zoom	71	5 _{td}	a8

Tabular graphics command reference

See below.

drl;ddr	drl wir;ddr	drl sol;ddr	drl shs;ddr	drlrot sol	lensdraw 32	lensdraw 32	fieldscan	
Standard Tools	Standard Tools	Standard Tools	Standard Tools	dilloc soi	plan 1.0	oblique 1.0	Tieluscan	
Lens Drawing	Lens Drawing	Lens Drawing	Lens Drawing	Lens Drawing	Lens Drawing	Lens Drawing		1
Lens>Lens Drawing	Lens>Lens Drawing	Lens>Lens Drawing	Lens>Lens Drawing	Lens Drawing	Tools>Demos>Rays	Tools>Demos>Rays		
dre	rpt ric ray	plr	ric2d ray	rpt_ric opd	plo	ric2d opd	chrshft	+
are	Standard Tools	pii	TICZU_Tay	Tpt_TTC Opd	pio	Ticza opa	CHISHIC	
Lens Drawing	Ray Analysis	Ray Analysis	Ray Analysis	Ray Analysis	Ray Analysis	Ray Analysis	Ray Analysis	2
Lens Drawing Lens>Lens Drawing	Evaluate>Other Ray	Evaluate>Ray Fans	Evaluate>Ray Fans	Evaluate>Other Ray	Evaluate>Ray Fans	Evaluate>Ray Fans	Evaluate>Other Ray	
latshft	,	,	pwf2D	pwf map	pwf con	pwf int	ŕ	
latsnit	distplt	rpt_wvf	PWE ZD	pwr map	pwr con	pwr int	rpt_spd	
Don Amalausia	Day Analysis	Standard Tools Wavefront	Wavefront	Wavefront	Wavefront	Wavefront	Standard Tools	3
Ray Analysis Evaluate>Other Ray	Ray Analysis Evaluate>Other Ray	Evaluate>Wavefront	Evaluate>Wavefront	Evaluate>Wavefront	Evaluate>Wavefront	Evaluate>Wavefront	Spot Diagram Evaluate>Spot Diag	
· ·								\vdash
spd2d	pls	recipolar	spsopd	footprt	footpro	ghosts mov	grst	
Spot Diagram	Spot Diagram	Spot Diagram	Spot Diagram	Spot Diagram	Spot Diagram	Spot Diagram	Spot Diagram	4
Evaluate>Spot Diag	Spot Diagram Evaluate>Spot Diag	Spot Diagram Evaluate>Spot Diag	Spot Diagram Evaluate>Spot Diag	Spot Diagram Optimize>Support	Optimize>Support	Optimize>Support	Lens>Show Optim	
rpt psf	psf2d	sprd con	sprd map	sprd con	sprd map	pss chr	rpt_tfr	
Standard Tools	PSIZO	0.1 dir	0.1 dir	0.1 fft	0.1 fft	pas CIII	Standard Tools	
PSF	PSF	PSF	PSF	PSF	PSF	PSF	MTF	5
Evaluate>Spread Fn	Evaluate>Spread Fn	Evaluate>Spread Fn	Evaluate>Spread Fn	Evaluate>Spread Fn	Evaluate>Spread Fn	Evaluate>Spread Fn	Evaluate>TransferFn	
plm tfr	fftmtf	mtfandptf	mtf_fld	squaremtf	sl otfspd	rpt_tfo	plm tfo	+
PIM CII	LICHCI	meranaper	mcr_rra	bquaremer	bi_ocibpa	Standard Tools	PIM CIO	
MTF	MTF	MTF	MTF	MTF	MTF	MTF	MTF	6
Evaluate>TransferFn	Evaluate>TransferFn	Evaluate>TransferFn	Evaluate>TransferFn	Evaluate>TransferFn	WITT	Evaluate>TransferFn	Evaluate>TransferFn	
fcurv	prg chr	psq chr	pdl bth	ple geo	ped	pgl bth	zdrl	
	2-1	202 000	2 3 2 3 3 3	1-0 500	200	25		l_
MTF	Energy Analysis	Energy Analysis	Energy Analysis	Energy Analysis	Energy Analysis	Energy Analysis	Zoom	7
Evaluate>TransferFn	Evaluate>Energy Dis	Evaluate>Energy Dis	Evaluate>Energy Dis	Evaluate>Energy Dis	Evaluate>Energy Dis	Evaluate>Energy Dis	Lens>Lens Drawing	
zrpt	polstate	thunf	surfprop rfl	surfprop tns	surfprop phr	surfprop pht	dblib_open	
								8
Zoom	Polarization	Polarization	Polarization	Polarization	Polarization	Polarization		O
	Evaluate>Pol	Evaluate>Pol	Evaluate>Pol	Evaluate>Pol	Evaluate>Pol	Evaluate>Pol	File>Lens Database	
open cdb pub	pgq chr 64;	sliderwheel	yybar	source	xsource	ppi mon	gplot_kit	
"."	sfg xy chr	_design			"3barh.ima"		_sample	9
"glasscdb";				ExtendedSources	ExtendedSources	AdvancedAnalysis		1
Lens>Glass Catalogs	Evaluate>Spread Fn	Optimize>SliderW	Optimize>Support	Source>View extnd	Source>Pixellated	Source>Partial Coh.	Tools>Plotting TKit	1_
gplot_sample	gplot2d	fill_contour	colors	wvra	sl_3rd	show_movie	sl_doublet	10
Tools>	_sample	_sample	Tools>	Tools>Special>2D		gbmovie fab		1-4
Plotting Toolkit	Tools>Plotting TKit	Tools>Plotting TKit	Plotting Toolkit	waveguide	Tools>Demos>Seidel	Tools>Demos>Gauss	Tools>Demos>Doub	₩
sl_trp	gradium demo	pla chr	plf chr	pld chr	ridemo	repsig	iangstat	11
To also Dance on Tutal 1	TaalasDaggeras Coo. !	Evaluates Devi Ferr	Evaluates Devi Ferr	Eveluates Devi Ferr				
Tools>Demos>Triplet	Tools>Demos>Grad	Evaluate>Ray Fans	Evaluate>Ray Fans	Evaluate>Ray Fans	e		1	+
a	b	С	d	e	f	g	h	

126 Appendix 2

Tabular graphics index

Draw syst	tem 2D	Draw system 3D	Draw system 3D	Draw system 3D	Draw system	Ray fans 2D	Ray fans 3D for	Ray fans movi
YZ	Z	wire-frame	solid	shaded solid	variable view	for vignetting	vignetting	
Element d	drawing	Ray analysis report	Ray analysis - one	Ray analysis -	OPD report	OPD -	OPD	Axial chromati
ISO 10	0110		field point*	2D field points		1 field point*	2D field points	focal shift
Lateral ch	romatic	Distortion grid plot	OPD map/contour	OPD map - 2D	OPD map - 1 field	OPD contour - 1	OPD	Spot diagram
aberrat	tion		rpt	field points	point*	field point*	interferogram	report
Spot diag	gram -	Spot diagram -	Spot diagram -	RMS spot size &	Footprint of beam -	Footprint profiles -	Ghost image movie	Optimisation ra
2D field	points	1 field point*	recipolar	OPD over field	1 field point	all field points		patterns
Point sp	oread	PSF -	PSF - contour	PSF map - one field	PSF contour (FFT	PSF map	PSF	MTF
function	report	2D field points		point	calc)r	(FFT calc)	section	thru frequency
MTF - 1	field	MTF 1 field point	Phase - thru	MTF over field - 3	MTF - square	MTF & spot size	MTF through focus	MTF through fo
poin	t*	(FFT calc)*	frequency*	frequencies	wave 1 field pt*	through focus	report	1 field pt*
MTF thru	ı focus	Encircled energy	Ensquared en.	LSF & KED	Encircled energy	Ensquared en.	LSF & KED	Zoom lens draw
across	field	(diffraction calc)	(diffraction calc)	(diffraction calc)	(geometrical calc)	(geometrical calc)	(geometrical calc)	
Zoom	lens	Polarisation map	Thin film	Surface reflectivity	Surface	Surface	Surface	Public lens
repo	ort	-	uniformity	-	transmission	reflected phase	transmitted phase	database
Glass cata	alogue -	PSF	Slider wheel design	y-ybar diagram	Extended source	Pixellated image	Partial coherence -	CCL example
n-V n	nap	2D contour lines	_		image	_	bar image	4 graphs
CCL exa	mple -	CCL example -	CCL example -	CCL example -	2D-waveguide	Seidel aberration	Gaussian beam	Doublet slide
XY gr	aph	contour	map	pen colours	coupling	demo	movie	wheel design
Triplet slide	1	GRIN lens slider	Longitudinal	Astigmatism - S &	Distortion	Photometric plot	Ray analysis	Incidence angl
desig	gn	wheel design	aberration	T over field	at 3 wavelengths	_	SIGMA format	statistics
a		b	С	d	e	f	g	h

Appendix 2 127

The 88 examples of OSLO graphics shown in the table below represent almost the full range of graphics output available to users of OSLO Premium version. Brief descriptions of each graphic example are given above. The routes for accessing these graphics are listed in the tabular command reference with the following format:

OSLO commands

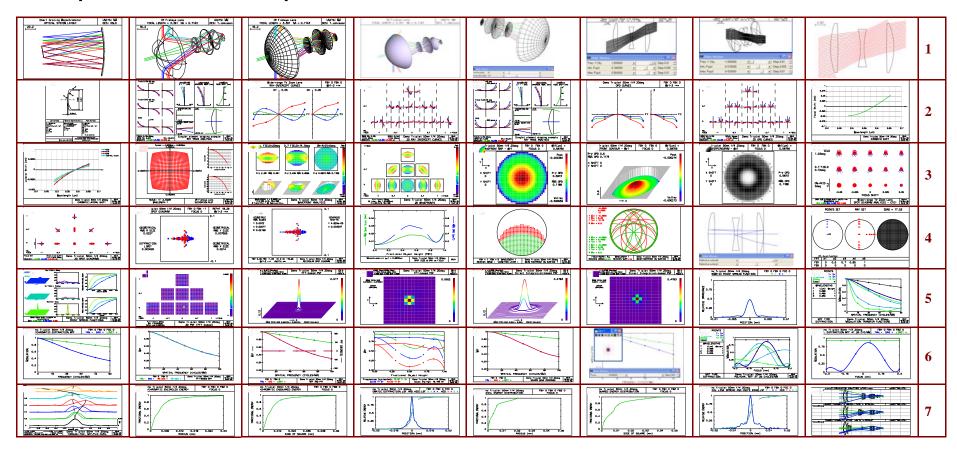
These are given in short form only. They can be typed as shown, and they are also useful as an index to the HELP

facility.

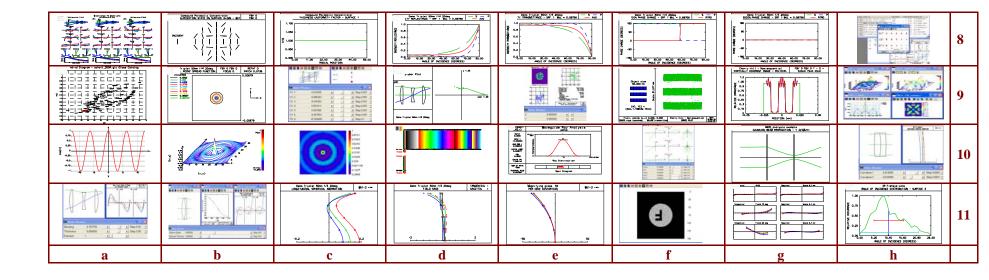
These refer to the groups of icons called up from the top left corner of any graphics window

ExtendedSources

These refer to the groups of icons called up from the top left corner of the main window.


Evaluate>Spread Fn

These show how most of the graphs can be created from menu headers.


^{*} Graphs indicated are for one field point only, and they can give results only on axis if accessed via the icons. To plot individual graphs for other field points, either issue the set object point command and then use the command line (for example sop 1 0 0;plr), or work through the menu headers.

128 Appendix 2

Graphics reference examples

Appendix 2 129

